首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some 3-amino 4,6-diarylpyridazine derivatives were tested for their effects on TXA2 and PGI2 biosyntheses in vitro and on the TXA2- and PGI2-synthesizing activities of cardiac tissue. Horse platelet and aorta microsomes were used as sources of thromboxane and prostacyclin synthetases respectively. The TXA2- and PGI2-synthesizing activities of cardiac tissue were studied on isolated perfused rabbit hearts (the heart microsomes being used both as TXA2 synthetase and PGI2 synthetase sources). TXB2 and 6-keto PGF1 alpha were determined by RIA. Among the compounds under study, 3-morpholino 4,6-diphenylpyridazine (III) was shown to inhibit specifically the TXA2 synthetase. Substitution of the morpholino group by a dimethylamino one (I) reinforced the inhibiting effects on TXA2 synthetase but it also revealed a slight anti-prostacyclin synthetase action of the molecule. Replacement of 3-morpholino moieties by either a 3-hydrazino (IV), or a 2-dimethylaminoethylamino (V), or a 2-morpholinoethylamino group (VI) abolished completely the effects of the molecule on TXA2 and PGI2 synthetases. Likewise the addition of chlorine on the para-position on the phenyl ring of I neutralized all its inhibitory effects both on TXA2 and PGI2 synthetases in vitro. None of the 3-amino 4,6-diarylpyridazine derivatives was active on either the TXA2- or PGI2-synthesizing activities of cardiac tissue.  相似文献   

2.
Experiments carried out under the conditions adopted showed the strong affinity of aminopyridazine derivatives for the eicosanoids TXA2 and PGI2. But this affinity depended on the chemical structure of the molecule: a small change in the radical grafted onto the pyridazine ring could completely modify the pharmacological activity of the molecule. Consequently it should be possible to control the properties of pyridazine derivatives according to pharmacological needs. Thus: --pyridazin-3-one derivatives were mainly active on TXA2 biosynthesis: 2-aminoalkyl 5-arylidene 6-methyl (4H) pyridazin-3-ones inhibited the TXA2-synthesizing activity of cardiac tissue whereas 3-amino 4,6-diaryl pyridazin-3-ones were specific inhibitors of the TXA2 synthetase in vitro, but these effects were weak. --pyridazine derivatives were devoid of any effect on the TXA2-synthesizing activity of cardiac tissue: they acted on either TXA2 synthetase or PGI2 synthetase according to the radicals grafted onto the pyridazine ring. --none of the compounds under study was active on the PGI2-synthesizing activity of cardiac tissue.  相似文献   

3.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF1 alpha and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio 6-keto-PGF1 alpha/TXB2 indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

4.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin E1 alpha (6-oxo-PGE1 alpha) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10(-5) M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature in vivo compared with platelets in vitro.  相似文献   

5.
The comparative effects of nicotine and cotinine on the biosynthesis of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the horse aorta and platelet microsomes were studied. TXB2 and 6-keto PGF1a stable metabolites of TXA2 and PGI2 respectively were determined by radioimmunoassay. TXA2 production in the presence of either nicotine or cotinine treatment was not altered. However, a dose dependent inhibition of PGI2 biosynthesis, and a dose dependent stimulation of PGI2 biosynthesis, was observed in the presence of nicotine and cotinine respectively. Moreover, cotinine (10b3 M) was able to prevent the inhibitory effect of nicotine on PGI2 synthetase when preincubated with horse aorta microsomes. It appears that cotinine, the major nicotine metabolite resulting from a breakdown process, could be useful for the organism, at least for the cardiovascular system.  相似文献   

6.
Ruan KH  Deng H  So SP 《Biochemistry》2006,45(47):14003-14011
Prostacyclin (PGI2), a vascular protector with vasodilation and antithrombotic properties, is synthesized by coupling reactions of cyclooxygenase (COX, the first enzyme) with PGI2 synthase (PGIS, the second enzyme) using arachidonic acid (AA) as an initial substrate. The first COX product, prostaglandin H2 (PGH2) is also a command substrate for other prostanoid enzymes that produce distinct eicosanoids, such as thromboxane A2 (TXA2). The actions of TXA2 to cause vasoconstriction and platelet aggregation oppose the vasodilatory and anti-aggregatory effects of PGI2. Specifically upregulating PGI2 biosynthesis is an ideal model for the prevention and treatment of the TXA2-mediated thrombosis involved in strokes and myocardial infarctions. Here, we report that a single protein was constructed by linking COX-2 and PGIS together to form a new fusion enzyme through a transmembrane domain with 10 or 22 residues. The engineered protein expressed in HEK293 and COS-7 cells was able to continually convert AA to prostaglandin (PG) G2 (catalytic step 1), PGH2 (catalytic step 2), and PGI2 (catalytic step 3). The studies first demonstrate that a single protein with three catalytic functions could directly synthesize PGI2 from AA with a Km of approximately 3.2 microM. Specific upregulation of PGI2 biosynthesis through expression of the engineered single protein in the cells has shown strong activity in inhibiting platelet aggregation induced by AA in vitro, which creates a great potential for the fusion enzyme to be used as one of the new therapeutic interventions for strokes and heart attacks. The studies have also provided a model linking COX with its downstream enzymes to specifically regulate biosynthesis of eicosanoids which have potent biological functions.  相似文献   

7.
Furosemide increases the synthesis of two major renal eicosanoids, prostacyclin (PGI2) and thromboxane A2 (TXA2), by stimulating the release of arachidonic acid which in turn is metabolized to PGG2/PGH2, then to PGI2 and TXA2. PGI2 may mediate, in part, the early increment in plasma renin activity (PRA) after furosemide. We hypothesized that thromboxane synthetase inhibition should direct prostaglandin endoperoxide metabolism toward PGI2, thereby enhancing the effects of furosemide on renin release. Furosemide (2.0 mg . kg-1 i.v.) was injected into Sprague-Dawley rats pretreated either with vehicle or with U-63,557A (a thromboxane synthetase inhibitor, 2 mg/kg-1 followed by 2 mg/kg-1 X hr-1). Urinary 6ketoPGF1 alpha and thromboxane B2 (TXB2), reflecting renal synthesis of PGI2 and TXA2, as well as PRA and serum TXB2, were measured. Serum TXB2 was reduced by 96% after U-63,557A. U-63,557A did not affect the basal PRA. Furosemide increased PRA in both vehicle and U63,557A treated rats. However, the PRA-increment at 10, 20 and 40 min following furosemide administration was greater in U-63,557A-treated rats than in vehicle-treated rats and urine 6ketoPGF1 alpha excretion rates were increased. These effects of thromboxane synthesis inhibition are consistent with a redirection of renal PG synthesis toward PGI2 and further suggest that such redirection can be physiologically relevant.  相似文献   

8.
The influence of taurine (in drinking water for 6 weeks) on PGI2 and TXA2 synthesis by some female rat organs was investigated using radioimmunoassay and platelet antiaggregatory bioassay. Taurine 100 and 200 mg/kg/day increased aortic PGI2 release from 0.59 +/- 0.04 (control) to 0.85 +/- 0.05 and 1.01 +/- 0.06 ng/mg, respectively and that by the myometrium from 0.24 +/- 0.02 (control) to 0.38 +/- 0.01 and 0.50 +/- 0.04 ng/mg wet tissue, respectively (P less than 0.05, n = 6). It did not affect PGI2 and TXA2 production in the heart or TXA2 in the aorta. Taurine 200 mg/kg depressed uterine TXA2 synthesis from 148.6 +/- 9.8 (control) to 85.4 +/- 6.8 pg/mg (P less than 0.05, n = 6). Furthermore taurine 0.4 and 0.8 mM in vitro stimulated PGI2 release by the myometrial and aortic tissues from pregnant rats. The stimulant effect of taurine on PGI2 may be related to its antioxidant effect whereas its inhibitory effect on uterine TXA2 may result from direction of synthesis towards PGI2. It is concluded that endogenous taurine may participate in regulation of PGs synthesis and that prostanoids may contribute to its known actions. On broad basis, taurine-induced release of PGI2 may prove of potential value in those ailments characterised by deficiency in PGI2 release.  相似文献   

9.
It has been proven that nicotine contributes to cardiovascular diseases, although its precise mechanism of action is still unclear. The purpose of this study is to find how nicotine may complicate myocardial ischemia by affecting the thromboxane/prostacyclin (TXA(2)/PGI(2)) balance. We used four groups (n=7 each) of isolated and perfused rabbit hearts according to Langendorff method: (i) control group; (ii) group submitted to 1 microM nicotine perfusion during 60 min; (iii) group submitted to a regional ischemia by ligation of the left descending coronary artery during 60 min and (iv) group submitted to nicotine perfusion during ischemia. Levels of TXB(2) and 6-keto PGF(1alpha), the stable metabolites of TXA(2) and PGI(2) were then determined in the microsomes of the hearts by radioimmunoassay. The results showed that (1) a TXA(2) synthetase activity is present in the myocardium, and this activity, as well as that of PGI(2) synthetase, is decreased by a 60min ischemia; (2) TXA(2) and PGI(2) activities are not affected by nicotine in the normal myocardium and (3) nicotine infusion during ischemia contributes to the increase of TXA(2)/PGI(2) ratio further by decreasing PGI(2). Therefore, these results provide one explanation on how nicotine might worsen myocardial ischemia.  相似文献   

10.
On the mechanism of prostacyclin and thromboxane A2 biosynthesis   总被引:3,自引:0,他引:3  
The present research describes studies which address the mechanism of prostacyclin (PGI2) and thromboxane A2 (TXA2) biosynthesis. In addition to prostaglandin H1 (PGH1), PGG2, PGH2, and PGH3, also 8-iso-PGH2, 13(S)-hydroxy-PGH2, and 15-keto-PGH2 were applied to determine the substrate specificities and kinetics of prostacyclin and thromboxane synthase in more detail. Human platelet thromboxane synthase converted PGH1, 8-iso-PGH2, 13(S)-hydroxy-PGH2 and 15-keto-PGH2 into the corresponding heptadecanoic acid (C17) plus malondialdehyde, whereas the thromboxane derivative was formed only from PGG2, PGH2, and PGH3 together with the corresponding C17 metabolite and malondialdehyde in a 1:1:1 ratio. In contrast, PGG2, PGH2, 13(S)-hydroxy-PGH2, 15-keto-PGH2 and PGH3 were almost completely isomerized to the corresponding prostacyclin derivative by bovine aortic prostacyclin synthase, whereas PGH1 and 8-iso-PGH2 only produced the corresponding C17 hydroxy acid plus malondialdehyde. Isotope-labeling experiments with [5,6,8,9,11,12,14,15-2H]PGH2 revealed complete retention of label and no isotope effect in the course of thromboxane biosynthesis, but the loss of one 2H atom at C-6 with an isotope effect of 1.20 during PGI2 formation. Prostacyclin and thromboxane synthase bind both 9,11-epoxymethano-PGF2 alpha and 11,9-epoxymethano-PGF2 alpha at the heme iron, but according to their difference spectra in opposite ways with respect to the 9- and 11-position. In agreement with published model studies, a cage radical mechanism is proposed for both enzymes according to which the initial radical process is terminated through oxidation of carbon-centered radicals by the iron-sulfur catalytic site, followed by ionic rearrangement to PGI2 or TXA2. Various Fe(III) model compounds as well as liver microsomes or cytochrome P-450CAM can also form small amounts of PGI2 and TXA2, but mainly yield 12(S)-hydroxy-5,8,10-heptadecatrienoic acid plus malondialdehyde probably by a radical fragmentation pathway.  相似文献   

11.
The effects of different lipid supplements on endogenous and exogenous production of eicosanoids were investigated in the rat following a 12-month pre-feeding period. The urinary excretion of tetranorprostanemonoic (TPM) and tetranorprostanedioic (TPD) acids was measured as an index of endogenous production whilst myocardial release of PGI2 and TXA2 was estimated under in vitro conditions. Compared to the reference group, n-3 PUFA rich tuna fish oil (TFO) fed rats displayed a near doubling of endogenous (TPM + TPD) synthesis; however, myocardial production was reduced by 32% (PGI2) and 55% (TXA2). Sheep fat supplementation also caused a 62% rise in urinary tetranor metabolites but in contrast to TFO feeding, myocardial production in vitro also showed a significant increase (P less than 0.05). Considerable changes in PUFA profile of plasma, heart and kidney occurred as a result of dietary lipid treatment and in addition a high tissue specificity was also noted with regard to the incorporation and conversion of dietary n-3 PUFA. For example, the heart showed a low EPA (1.2%) and high DHA (28.0%), whereas their proportions in the kidney were near equal (6-7%). As only the TFO diet exerted a significant effect on the proportion of AA, the changes in eicosanoid production cannot be fully explained on the basis of precursor/inhibitor availability. The results probably reflect the complex interactions between fatty acid substrates, release mechanisms and biosynthetic enzymes.  相似文献   

12.
The stable PGI2-analogue iloprost and the TXA2-receptor antagonist sulotroban (BM 13177) were investigated for possible synergistic effects on platelet aggregation in human platelet rich plasma in vitro. Iloprost and sulotroban synergistically inhibited U 46619, collagen, and the second wave of ADP-induced platelet aggregation. Iloprost and sulotroban at concentrations showing little or no inhibition alone resulted, in combination, in marked or complete inhibition of U 46619 or collagen induced aggregation. Combination of iloprost 10(-10) M, which had no effect on the concentration-response curve (CRC) to U 46619, with sulotroban 5 x 10(-6) M, which shifted the CRC to U 46619 by a factor of 3 to the right, resulted in a rightward shift of the U 46619 CRC by a factor of 4.5. To attain a 4.5-fold shift with either compound alone, a concentration of 5 x 10(-10) M iloprost or 10(-5) M sulotroban was required. A similar mutual enhancement of inhibitory effects was seen for combinations of the PGI2-analogue cicaprost (ZK 96.480) with sulotroban or the TXA2-receptor antagonist SQ 29548 with iloprost. When the TXA2-dependent part of collagen-induced aggregation was fully inhibited by sulotroban, the concentrations of iloprost necessary for 90% inhibition were reduced by a factor of 2.5 - 3. In the presence of acetylsalicylic acid, the synergistic action of sulotroban and iloprost was reduced and merely additive effects against U 46619-induced platelet aggregation were found, suggesting that the release of endogenous TXA2 plays an important role for the synergistic effect of the two compounds. The combination of a PGI2-analogue and a TXA2-antagonist may lead to a safer and more effective control of platelet activation than with either compound alone.  相似文献   

13.
C P Cox  J Linden  S I Said 《Peptides》1984,5(2):325-328
Platelet-activating factor (PAF), a potent endogenous phospholipid released by a variety of mammalian cells, induces platelet activation in vivo and in vitro. Little is known, however, about the physiological modulation of its actions. We have examined the ability of two naturally occurring compounds which stimulate cAMP production, vasoactive intestinal peptide (VIP) and prostacyclin (PGI2), to inhibit PAF-induced platelet aggregation and secretion in vitro. Washed, [3H]serotonin-labeled, rabbit platelets were incubated 60 sec in the presence of VIP, PGI2 or 3-isobutyl-1-methylxanthine (IBMX) and subsequently stimulated with PAF. In separate studies, cAMP levels were determined in similar aliquots of platelets incubated for 30 sec with VIP, PGI2 or IBMX. VIP, PGI2 and IBMX inhibited platelet aggregation and secretion in a dose-dependent manner. Fifty percent inhibition was achieved at final concentrations of 1.7 X 10(6) M VIP, 3.6 X 10(6) M PGI2 and 6.5 X 10(5) M IBMX. IBMX potentiated the inhibitory effects of VIP and PGI2 on PAF-induced platelet activation. VIP and PGI2 elevated platelet cAMP levels four-fold and 50-fold, respectively, in the presence of 10(3) M IBMX. These findings demonstrate that VIP inhibits PAF-induced platelet activation, with a potency comparable to that of PGI2.  相似文献   

14.
Effects of nitrogen dioxide (NO2) exposure on prostacyclin (PGI2) synthesis in the rat lung and thromboxane A2 (TXA2) synthesis in the platelets were studied. Male Wistar rats were exposed to 10 ppm NO2 for 1, 3, 5, 7 and 14 days. PGI2 synthesizing activity of homogenized lung decreased. The damage of PGI2 synthesizing activity reaches its maximum at 3 days. At 14 days, PGI2 synthesizing activity returned to the normal level. The activity of PGI2 synthetase decreased significantly. The formation of lipid peroxides due to NO2 exposure may cause the depression of PGI2 synthesizing activity of lung. On the other hand, platelet TXA2 synthesizing activity increased. This increased TXA2 synthesizing activity lasted at least till 3 days. Then, it returned to the normal level. The counts of platelet were decreased significantly by 1, 3, 5 and 7 days NO2 exposure. Then the decreased counts of platelet returned to the normal level at 14 days NO2 exposure. These results indicate that the depression of PGI2 synthesizing activity of lung by NO2 exposure cause an increase in TXA2 synthesizing activity of platelets. It may contribute to induce platelet aggregation and to the observed decrease in the number of platelets during NO2 exposure.  相似文献   

15.
K Bj?ro 《Prostaglandins》1986,31(4):699-714
The formation of prostacyclin (PGI2) and thromboxane A2 (TXA2) (measured as the stable metabolites 6-keto-PGF1 alpha and TXB2) during stimulation with vasoactive autacoids was registered in human umbilical arteries perfused in vitro. Responses were registered within 3-4 minutes after addition of the substances. Both angiotensin I and II were found to increase the formation of PGI2 while depressing that of TXA2. Serotonin increased the formation of TXA2 but not that of PGI2. Both PGE2 and PGF2 alpha stimulated the PGI2 formation. The TXA2 mimetic U46619, increased PGI2 production, whereas PGI2 slightly increased the formation of TXA2. All responses were found to be completely inhibited by indomethacin.  相似文献   

16.
Endothelium-dependence of contractile responses to endothelin-1 was examined in isolated canine basilar arteries. Within 2 hrs after mounting tissue preparations, endothelin-1 (10(-9) M) caused a monophasic tonic contraction that developed very slowly and was sustained in intact and endothelium-removed arteries. More than 5 hrs after tissue mounting, endothelin-1 (10(-9) M) caused a biphasic contraction consisting of phasic and tonic components in intact arteries, and caused a monophasic tonic contraction in endothelium-removed arteries. This phasic component was significantly decreased by aspirin (5 x 10(-5) M,), OKY-046 (10(-5) M) (a TXA2 synthetase inhibitor) and ONO-3708 (10(-8) M) (a TXA2 antagonist). The present experiments demonstrate that endothelin-1 causes an endothelium-independent tonic contraction and an endothelium-dependent phasic contraction in canine basilar arteries, and suggest that TXA2 plays a role as an endothelium-derived contracting factor.  相似文献   

17.
In this paper, the effects of 3,4-dihydroxyacetophenone, DHAP (Qingxintong), an active constituent of traditional Chinese medicine, on the biosynthesis of TXA2 and PGI2 in human placental villi and umbilical artery segments of normal term pregnancy in vitro were studied by a perifusion technique. The collected fractions were assayed by radioimmunoassay for TXB2 and 6-keto-PGF1 alpha. The results showed that DHAP inhibited TXA2 and PGI2 production by umbilical artery segments in a dose dependent fashion and in both tissues TXA2 was more sensitive to inhibition than was 6-keto-PGF1 alpha. According to these data it is suggested that DHAP might be useful in treatment of pathologic pregnancies with chronic defective utero-placental circulation such as PIH and IUGR to improve this circulation.  相似文献   

18.
Prostacyclin (PGI2) produced a biphasic response in canine isolated basilar arteries. In low doses (1 X 10(-8)M-1 X 10(-7)M) PGI2 caused a slight but consistent relaxation of resting muscle tone. In low concentrations (1 X 10(-8)M-1 X 10(-6)M) PGI2 antagonized muscle contractions caused by serotonin or prostaglandin (PG) F2 alpha. This relaxant effect with low doses of PGI2 on the isolated cerebral artery contrasts with findings obtained with other PGs and supports the hypothesis that PGI2 is a mediator of vasodilatation. However, in 1 X 10(-5)M concentrations PGI2 contracted the arterial muscle and did not antagonize contractions induced by serotonin or PGF2 alpha.  相似文献   

19.
The effect of prostacyclin (PGI2) on blood pressure and heart rate (in vivo) and on isolated heart tissue has been investigated in different species. Isolated cardiac tissue had limited responses to PGI2 tested at 10(-13) to 10(-5) M. Cultured neonatal rat heart cells did not respond to PGI2, neither did intact rat hearts or rabbit cardiac tissue. Guinea pig and rat atria showed limited dose-dependent responses to PGI2 at concentrations greater than 10(7) M. In rat atria, 10(-5) M PGI2 produced a limited elevation of tissue cAMP content. When given by intravenous injection or infusion, PGI2 produced hypotension in anaesthetized primates (three species), rat, rabbit, pig, and dog. As a vasodepressor in all species, PGI2 (on a weight basis) was more active than prostaglandins of the B or E type and, in most species tested, it was approximately five times more active than PGE2. Heart responses in intact animals were often paradoxical in that decreases in heart rate often accompanied blood pressure falls.  相似文献   

20.
J Mehta  P Mehta  D Hay 《Prostaglandins》1982,24(6):751-761
These experiments were conducted to determine the effects of dipyridamole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 micrograms/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF1 alpha. Minimum concentration of dipyridamole causing PGI2 release was 50 micrograms/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号