首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop–wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop–wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11–12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

2.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

3.
Genetic analysis of sunflower domestication   总被引:15,自引:0,他引:15  
Burke JM  Tang S  Knapp SJ  Rieseberg LH 《Genetics》2002,161(3):1257-1267
Quantitative trait loci (QTL) controlling phenotypic differences between cultivated sunflower and its wild progenitor were investigated in an F(3) mapping population. Composite interval mapping revealed the presence of 78 QTL affecting the 18 quantitative traits of interest, with 2-10 QTL per trait. Each QTL explained 3.0-68.0% of the phenotypic variance, although only 4 (corresponding to 3 of 18 traits) had effects >25%. Overall, 51 of the 78 QTL produced phenotypic effects in the expected direction, and for 13 of 18 traits the majority of QTL had the expected effect. Despite being distributed across 15 of the 17 linkage groups, there was a substantial amount of clustering among QTL controlling different traits. In several cases, regions influencing multiple traits harbored QTL with antagonistic effects, producing a cultivar-like phenotype for some traits and a wild-like phenotype for others. On the basis of the directionality of QTL, strong directional selection for increased achene size appears to have played a central role in sunflower domestication. None of the other traits show similar evidence of selection. The occurrence of numerous wild alleles with cultivar-like effects, combined with the lack of major QTL, suggests that sunflower was readily domesticated.  相似文献   

4.
Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.  相似文献   

5.
Development of methodologies for early selection is one of the most important goals of olive breeding programs at present. In this context, the identification of molecular markers associated with beneficial alleles could allow the development of marker-assisted selection (MAS) strategies in olive breeding programs. Fruit-related and plant vigor traits, which are of key importance for olive selection and breeding, were analyzed during two seasons in a progeny derived from the cross ‘Picual’ × ‘Arbequina.’ Quantitative trait loci (QTL) analyses were performed using MapQTL 4.0. A total of 22 putative QTLs were identified in the map of ‘Arbequina.’ QTLs clustered in linkage groups (LG) 1, 10 and 17. QTLs for oil-related traits located in LG 1 and 10 explained around 20–30 % of the phenotypic variability depending on the season and the trait. QTL for moisture-related traits were detected in LG 1, 10 and 17, and QTLs for the ratio pulp to stone were identified in LG 10 and 17 explaining around 15–20 %. Interaction between QTLs for the same trait was investigated. The significance of these results was discussed considering the co-localization of QTLs and Pearson correlations among traits. Five additional QTLs were detected in the map of ‘Picual.’ Four of them clustered in LG 17 indicating the presence of a QTL for fruit weight explaining around 12.7–15.2 % of the variability. Additionally, a QTL for trunk diameter was detected in LG 14 explaining 16 % of the variation. These results represent an important step toward the application of MAS in olive breeding programs.  相似文献   

6.
Quantitative trait locus analysis of the early domestication of sunflower   总被引:1,自引:0,他引:1  
Wills DM  Burke JM 《Genetics》2007,176(4):2589-2599
Genetic analyses of the domestication syndrome have revealed that domestication-related traits typically have a very similar genetic architecture across most crops, being conditioned by a small number of quantitative trait loci (QTL), each with a relatively large effect on the phenotype. To date, the domestication of sunflower (Helianthus annuus L.) stands as the only counterexample to this pattern. In previous work involving a cross between wild sunflower (also H. annuus) and a highly improved oilseed cultivar, we found that domestication-related traits in sunflower are controlled by numerous QTL, typically of small effect. To provide insight into the minimum genetic changes required to transform the weedy common sunflower into a useful crop plant, we mapped QTL underlying domestication-related traits in a cross between a wild sunflower and a primitive Native American landrace that has not been the target of modern breeding programs. Consistent with the results of the previous study, our data indicate that the domestication of sunflower was driven by selection on a large number of loci, most of which had small to moderate phenotypic effects. Unlike the results of the previous study, however, nearly all of the QTL identified herein had phenotypic effects in the expected direction, with the domesticated allele producing a more crop-like phenotype and the wild allele producing a more wild-like phenotype. Taken together, these results are consistent with the hypothesis that selection during the post-domestication era has resulted in the introduction of apparently maladaptive alleles into the modern sunflower gene pool.  相似文献   

7.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild ( Raphanus raphanistrum ) and four hybrid radish populations ( R. raphanistrum  ×  Raphanus sativus ) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.  相似文献   

8.
With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.  相似文献   

9.

Key message

Loci on LGIV, VI, and VIII of melon genome are involved in the control of fruit domestication-related traits and they are candidate to have played a role in the domestication of the crop.

Abstract

The fruit of wild melons is very small (20–50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F2 population from the cross between the Indian wild melon “Trigonus” and the western elite cultivar ‘Piel de Sapo’. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with “Trigonus” allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis.
  相似文献   

10.
An advanced backcross QTL study was performed in pepper using a cross between the cultivated species Capsicum annuum cv. Maor and the wild C. frutescens BG 2816 accession. A genetic map from this cross was constructed, based on 248 BC(2) plants and 92 restriction fragment length polymorphism (RFLP) markers distributed throughout the genome. Ten yield-related traits were analyzed in the BC(2) and BC(2)S(1) generations, and a total of 58 quantitative trait loci (QTLs) were detected; the number of QTLs per trait ranged from two to ten. Most of the QTLs were found in 11 clusters, in which similar QTL positions were identified for multiple traits. Unlike the high percentage of favorable QTL alleles discovered in wild species of tomato and rice, only a few such QTL alleles were detected in BG 2816. For six QTLs (10%), alleles with effects opposite to those expected from the phenotype were detected in the wild species. The use of common RFLP markers in the pepper and tomato maps enabled possible orthologous QTLs in the two species to be determined. The degree of putative QTL orthology for the two main fruit morphology traits-weight and shape-varied considerably. While all eight QTLs identified for fruit weight in this study could be orthologous to tomato fruit weight QTLs, only one out of six fruit shape QTLs found in this study could be orthologous to tomato fruit shape QTLs.  相似文献   

11.
Resistance to root-knot nematodes [Meloidogyne arenaria (Neal) Chitwood] is needed for cultivation of peanut in major peanut-growing areas, but significant resistance is lacking in the cultivated species (Arachis hypogaea L.). Markers to two closely-linked genes introgressed from wild relatives of peanut have been identified previously, but phenotypic evidence for the presence of additional genes in wild species and introgression lines has eluded quantitative trait locus (QTL) identification. Here, to improve sensitivity to small-effect QTLs, an advanced backcross population from a cross between a Florunner component line and the synthetic amphidiploid TxAG-6 [Arachis batizocoi × (A. cardenasii × A. diogoi)] was screened for response to root-knot nematode infection. Composite interval mapping results suggested a total of seven QTLs plus three putative QTLs. These included the known major resistance gene plus a second QTL on LG1, and a potentially homeologous B-genome QTL on LG11. Additional potential homeologs were identified on linkage group (LG) 8 and LG18, plus a QTL on LG9.2 and putative QTLs on LG9.1 and 19. A QTL on LG15 had no inferred resistance-associated homeolog. Contrary to expectation, two introgressed QTLs were associated with susceptibility, and QTLs at some homeologous loci were found to confer opposite phenotypic responses. Long-term functional conservation accompanied by rapid generation of functionally divergent alleles may be a singular feature of NBS-LRR resistance gene clusters, contributing to the richness of resistance alleles available in wild relatives of crops. The significance for peanut evolution and breeding is discussed.  相似文献   

12.
We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype x nutrient interaction in the common-garden experiment and genotype x site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.  相似文献   

13.
Blush skin and flowering time are agronomic traits of interest to the Agricultural Research Council (ARC) Infruitec-Nietvoorbij pear breeding programme. The genetic control of these traits was investigated in the pear progeny derived from ‘Flamingo’ (blush cultivar) × ‘Abate Fetel’ (slightly blush) made up of 121 seedlings. Blush skin was scored phenotypically over three seasons and flowering time was scored over two seasons. A total of 160 loci from 137 simple sequence repeat (SSR) markers were scored in the progeny and used to construct parental genetic linkage maps. Quantitative trait loci (QTL) analysis revealed two QTLs for blush skin, a major QTL on linkage group (LG) 5 in ‘Flamingo’, and a major QTL on LG9 in ‘Abate Fetel’. Two SSR markers, NB101a and SAmsCO865954, were closely linked with the major QTL on LG5 in ‘Flamingo’, with alleles 139 bp and 462 bp in coupling, respectively. These markers were present in approximately 90% of the seedlings scored as good blush (class 4) based on the average data set. These two markers were used to genotype other pear accessions to validate the QTL on LG5 with the view of marker-assisted selection. Two candidate genes, MYB86 and UDP-glucosyl transferase, were associated with the QTL on LG5 and MYB21 and MYB39 were associated with the QTL on LG9. QTL analysis for flowering time revealed a major QTL located on LG9 in both parents. Marker GD142 with allele 161 bp from ‘Flamingo’ was present in approximately 88% of the seedlings that flowered earlier than either parent, based on the average data set. The QTLs and linked markers will facilitate marker-assisted selection for the improvement of these complex traits.  相似文献   

14.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

15.
QTL clusters reflect character associations in wild and cultivated rice   总被引:26,自引:0,他引:26  
The genetic basis of character association related to differentiation found in the primary gene pool of rice was investigated based on the genomic distribution of quantitative trait loci (QTLs). Major evolutionary trends in cultivated rice of Asiatic origin (Oryza sativa) and its wild progenitor (O. rufipogon) are: (1) differentiation from wild to domesticated types (domestication), (2) ecotype differentiation between the perennial and annual types in wild races, and (3) the Indica versus Japonica type differentiation in cultivated races. Using 125 recombinant inbred lines (RILs) derived from a cross between an Indica cultivar of O. sativa and a strain of O. rufipogon carrying some Japonica-like characteristics, we mapped 147 markers, mostly RFLPs, on 12 chromosomes. Thirty-seven morphological and physiological quantitative traits were evaluated, and QTLs for 24 traits were detected. The mapped loci showed a tendency to form clusters that are composed of QTLs of the domestication-related traits as well as Indica/Japonica diagnostic traits. QTLs for perennial/annual type differences did not cluster. This cluster phenomenon could be considered "multifactorial linkages" followed by natural selection favoring co-adapted traits. Further, it is possible that the clustering phenomenon is partly due to pleiotropy of some unknown key factor(s) controlling various traits through diverse metabolic pathways. Chromosomal regions where QTL clusters were found coincided with the regions harboring genes or gene blocks where the frequency of cultivar-derived alleles in RILs is higher than expected. This distortion may be partly due to unconscious selection favoring cultivated plant type during the establishment of RILs.  相似文献   

16.
Gene flow between crop fields and wild populations often results in hybrids with reduced fitness compared to their wild counterparts due to characteristics imparted by the crop genome. But the specifics of the evolutionary outcome of crop-wild gene flow may depend on context, varying due to local environmental conditions and genetic variation within and among wild populations and among crop lines. To evaluate context-dependence of fitness of F1 hybrids, sunflower crop lines were crossed with nine wild populations from across the northern United States. These crop-wild hybrids and their wild counterparts were grown under agricultural conditions in the field with and without wheat competition. Hybrids were far less fecund than wild plants, yet more likely to survive to reproduce. There was considerable variability among wild populations for fecundity and the specific crop line used to generate the crop-wild hybrid significantly affected fecundity. The fitness deficit suffered by crop-wild hybrids varied by population, as did the rankings of the crop-wild hybrids from three different crop lines. Wheat competition decreased fecundity and survival considerably and hampered seed production of wild plants more than that of hybrids. Genotype x environment interactions indicated that the response of fitness to competition differed by population. Consequently, the fitness of hybrids relative to wild plants varied considerably among wild populations and was not consistent across environments. Notably, relative fitness of hybrids was greater under competitive conditions. This research is the first study of its kind to demonstrate that the consequences of crop-wild gene flow are context dependent and contingent on the genetics of the specific wild populations and the local biotic and abiotic conditions.  相似文献   

17.
The complex history of the domestication of rice   总被引:10,自引:1,他引:9  
BACKGROUND: Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. SCOPE: Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. CONCLUSIONS: The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of alleles will allow scientists to better understand our ancestors and breed better rice for our descendents.  相似文献   

18.
Advanced backcross QTL analysis is proposed as a method of combining QTL analysis with variety development. It is tailored for the discovery and transfer of valuable QTL alleles from unadapted donor lines (e.g., land races, wild species) into established elite inbred lines. Following this strategy, QTL analysis is delayed until the BC2 or BC3 generation and, during the development of these populations, negative selection is exercised to reduce the frequency of deleterious donor alleles. Simulations suggest that advanced backcross QTL analysis will be effective in detecting additive, dominant, partially dominant, or overdominant QTLs. Epistatic QTLs or QTLs with gene actions ranging from recessive to additive will be detected with less power than in selfing generations. QTL-NILs can be derived from advanced backcross populations in one or two additional generations and utilized to verify QTL activity. These same QTL-NILs also represent commercial inbreds improved (over the original recurrent inbred line) for one or more quantitative traits. The time lapse from QTL discovery to construction and testing of improved QTL-NILs is minimal (1–2 years). If successfully employed, advanced backcross QTL analysis can open the door to exploiting unadapted and exotic germplasm for the quantitative trait improvement of a number of crop plants.  相似文献   

19.
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water‐limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought‐sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co‐mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well‐watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non‐stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water‐use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology‐informed marker‐assisted selection.  相似文献   

20.
Approximately 170 BC2 plants from a cross between an elite processing inbred (recurrent parent) and the wild species Lycopersicon pimpinellifolium LA1589 (donor parent) were analyzed with segregating molecular markers covering the entire tomato genome. Marker data were used to identify QTLs controlling a battery of horticultural traits measured on BC2F1 and BC3 families derived from the BC2 individuals. Despite its overall inferior appearance, L. pimpinellifolium was shown to possess QTL alleles capable of enhancing most traits important in processing tomato production. QTL-NIL lines, containing specific QTLs modifying fruit size and shape, were subsequently constructed and shown to display the transgressive phenotypes predicted from the original BC2 QTL analysis. The potential of exploiting unadapted and wild germplasm via advanced backcross QTL analysis for the enhancement of elite crop varieties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号