首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

2.
OPINION Manipulating lake community structure: where do we go from here?   总被引:1,自引:0,他引:1  
SUMMARY. 1 More than 10 years experience with whole lake pelagic manipulation has suggested some general trends applicable to all freshwater pelagic communities and some specific trends related to lake depth.
2 Among the general trends is the observation that the trophic cascade is strongly damped. This means that changes in phytoplankton biomass can be assured only when the fish community is strongly manipulated.
3 Among the depth related trends is the observation that in shallow lakes, changes in fish community structure are more likely to have cascading impacts on phytoplankton than are changes in deep lakes.
4 In shallow lakes, fish removal frequently results in decreased turbidity which is associated with the development of dense macrophyte populations and significant reductions of algal standing stocks. The mechanisms involve: increased grazing by zooplankton, the removal of fish induced bioturbation and nutrient recycling, and direct and indirect macrophyte effects (shading, zooplankton refuges and competition for nutrients).
5 In shallow lakes, where planktivore biomass can be regulated and macrophyte development is acceptable, fish biomanipulalions are likely to result in reduced algal populations and improved water quality.
6 In deep lakes, where macrophytes are not as important, long-term effects of fish manipulations are strongly dependent upon the probability of non-grazable algal bloom development. This is determined by many factors (chemical, physical and grazer related) which modify the impact that grazers have on phytoplankton biomass.
7 In deep lakes, successful fish biomanipulations may only be effective when chemical and physical factors are altered to produce algal species compositions that permit strong top-down control of prey by predators.  相似文献   

3.
4.
Macrophytes may enhance grazing on phytoplankton by providing a refuge for zooplankton against fish predation. Loss of macrophytes can trigger sudden degradation of water clarity (regime shift) in lakes. However, the presence of piscivores may drive planktivorous fish to take refuge amongst littoral macrophytes. To address the possibility of regime shifts, I here constructed an empirically based model that combined population dynamics of organisms with game theory for optimal habitat selection, taking into consideration the trophic structure, lake size and eutrophication. The model showed that macrophytes generally acted as a refuge for zooplankton, rather than for fish. The model predicted that regime shifts were more likely in small, shallow lakes and that the presence of macrophytes raised the possibility of regime shifts. The present study demonstrated that the fast dynamics of animal behaviour could lead to regime shifts, in connection with slower variables such as nutrient loading.  相似文献   

5.
Species composition and interactions, biomass dominance, geographic distribution and driving variables were investigated for two key elements of the pelagic food web of Alpine lakes, the phytoplankton and the zooplankton, based on a single sampling campaign during summer 2000. Altogether, 70 lakes were surveyed, 49 of which located in three different lake districts of the west and eastern Italian Alps and 21 in the central Austrian Alps (within the uppermost Danube catchment). In addition to the analysis of environmental variables affecting distribution and species structure of the two planktonic compartments, a brief review of the main research lines and hypotheses adopted in the past for the study of phytoplankton and zooplankton in high Alpine lakes is given. The lakes, investigated partly within the European project EMERGE (EVK1-CT-1999-00032) and partly within a regional project in the eastern Alps, comprise a wide range of morphological, chemical and trophic conditions. The phytoplankton communities were found to be diverse and mostly dominated by flagellates (chrysophytes, cryptophytes and dinoflagellates), and only to a lesser extent by non-motile green algae, desmids and centric diatoms. The zooplankton communities were mainly dominated by Alpine cladocerans and copepod species, while rotifers were abundant within one group of Italian lakes (sampled in early summer). The multivariate statistical analyses (CCA) showed that catchment features (i.e. percentage of vegetation cover and geochemical composition) and nitrate concentration are essential drivers for the phytoplankton, whereas for zooplankton also trophic status of the lakes and phytoplankton structure are important. The combined variance analysis of the lake clusters outlined by the multivariate analyses on phytoplankton and zooplankton data, respectively, allowed the identification of four principal lake types (three located on siliceous and one on carbonaceous bedrock), each one characterised by a certain combination of habitat features, which in their turn influence trophic state, and phytoplankton and zooplankton species composition and functionality.  相似文献   

6.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

7.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

8.
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six‐year study showed that the proportion of fish migrating was positively related to lake temperature during the pre‐migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto‐ and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.  相似文献   

9.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

10.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

11.
Information on the effects of water level changes on microbial planktonic communities in lakes is limited but vital for understanding ecosystem dynamics in Mediterranean lakes subjected to major intra- and inter-annual variations in water level. We performed an in situ mesocosm experiment in an eutrophic Turkish lake at two different depths crossed with presence/absence of fish in order to explore the effects of water level variations and the role of top-down regulation at contrasting depths. Strong effects of fish were found on zooplankton, weakening through the food chain to ciliates, HNF and bacterioplankton, whereas the effect of water level variations was overall modest. Presence of fish resulted in lower biomass of zooplankton and higher biomasses of phytoplankton, ciliates and total plankton. The cascading effects of fish were strongest in the shallow mesocosms as evidenced by a lower zooplankton contribution to total plankton biomass and lower zooplankton:ciliate and HNF:bacteria biomass ratios. Our results suggest that a lowering of the water level in warm shallow lakes will enhance the contribution of bacteria, HNF and ciliates to the plankton biomass, likely due to increased density of submerged macrophytes (less phytoplankton); this effect will, however, be less pronounced in the presence of fish.  相似文献   

12.
Experiments have revealed much about top‐down and bottom‐up control in ecosystems, but manipulative experiments are limited in spatial and temporal scale. To obtain a more nuanced understanding of trophic control over large scales, we explored long‐term time‐series data from 13 globally distributed lakes and used empirical dynamic modelling to quantify interaction strengths between zooplankton and phytoplankton over time within and across lakes. Across all lakes, top‐down effects were associated with nutrients, switching from negative in mesotrophic lakes to positive in oligotrophic lakes. This result suggests that zooplankton nutrient recycling exceeds grazing pressure in nutrient‐limited systems. Within individual lakes, results were consistent with a ‘seasonal reset’ hypothesis in which top‐down and bottom‐up interactions varied seasonally and were both strongest at the beginning of the growing season. Thus, trophic control is not static, but varies with abiotic conditions – dynamics that only become evident when observing changes over large spatial and temporal scales.  相似文献   

13.
A large-scale biomanipulation trial was carried out on Lake Vesijärvi in Finland during 1989–1993. Following the mass removal of coarse fish the biomass of cyanobacteria collapsed from 1.4 g/m?3 to below 0.4 g/m?3, while total phosphorus concentration declined from 45 μ g/L to 30 μ g/L. No relevant changes in zooplankton communities were observed. The results suggest that the success of food web manipulation as a tool for lake restoration is not necessarily dependent on the grazing rate of zooplankton. The effects of reduced fish-mediated internal loading and recycling of nutrients are in many cases stronger than those of reduced planktivory. Alternative stable states of water quality may also exist in lakes not covered by macrophytes, owing to the changes in the behavior of fish stocks. Year-to-year variation in the littoral zone may cause large oscillations in lake ecosystems—for example, through the recruitment of fish. In addition, the nutrients translocated by fish from the littoral zone may affect the nutrient dynamics of the pelagial plankton community. In terms of phytoplankton species composition and the ratio of phosphorus to chlorophyll a, the water quality in Lake Vesijärvi has improved in a stepwise fashion within the last 10 years. This is probably due to the fact that the five-year mass removal of fish in Enonselkä fulfilled the requirement of sustained management of fish stocks in order to maintain nonequilibrial conditions between alternate stable states. The prediction of the water quality development is obscured, however, by spatial and temporal within-lake variation, which sets high requirements for sampling programs.  相似文献   

14.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

15.
Biomanipulation development in Norway   总被引:2,自引:2,他引:0  
Since 1974 several studies have been carried out in Norway to investigate the interactions between planktivorous fish, zooplankton, phytoplankton and water chemistry. Since 1978 a long-term national research program has been conducted by the Norwegian Council for Scientific and Industrial Research (NTNF). In this program several whole lake manipulations of the fish stocks have been performed to test hypotheses about trophic interactions. It was predicted that manipulations of planktivorous fish populations, might also improve water quality in lakes undergoing eutrophication. Two examples are given to illustrate the achieved results. I: Whole lake fertilization experiment (1974–1978) carried out by Langeland and Reinertsen. The results revealed the importance of top-down effects in the lake ecosystem. When cladocerans dominated, the zooplankton community was able to maintain a more or less constant phytoplankton biomass and a rather low phytoplankton production even when nutrient levels were increased. During years with rotifer dominance, algal biomass and productivity increased, despite the low amounts of added nutrients. II: Experiment performed by Reinertsen, Jensen, Koksvik, Langeland and Olsen in the eutrophic Lake Haugatjern, total elimination of the fish populations by rotenone in late 1980, resulted in a 4-fold decrease in the algal biomass. The species composition changed from the dominance of large-sizedAnabaena flos-aquae andStaurastrum luetkemuelleri to smaller, fastgrowing species and gelatinous green algae. The results are discussed in relation to management of inland waters by combined techniques of biomanipulation and reduced external nutrient supply which increase food-chain efficiency.  相似文献   

16.
Major efforts have been made world-wide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes. Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.  相似文献   

17.
With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.  相似文献   

18.

Global warming may intensify eutrophication of shallow lakes by affecting nutrient loading, evaporation rates, and water level and thus produce major changes in food webs. We investigated to what degree food webs in tropical humid lakes differed from those in more eutrophic semi-arid lakes of the same latitude. Our results indicate that the catchment area-to-lake area ratio, nutrients, chlorophyll a, suspended solids, abundances of phytoplankton, zooplankton, and omnivorous fish as well as total fish catch per unit effort were all higher in the semi-arid lakes, whereas inlet water-to-evaporation ratio (proxy for water balance), water transparency, percentage macrophytes cover, and the piscivores:omnivores ratio were higher in the humid lakes. Our results suggest that reduced inlet water-to-evaporation ratio will increase lake eutrophication, which, in turn, as in temperate regions, will alter trophic structure of the freshwater community.

  相似文献   

19.
SUMMARY. The vertical and horizontal distribution of electrical conductivity, soluble reactive phosphorus (SRP), total phosphorus, ammonia-nitrogen and nitrate-nitrogen in the South Basin of Windermere is described and related, where possible, to spatial variations in phytoplankton and zooplankton. For most variables, the maximum range of horizontal variation on a single day was greater than the maximum range of seasonal variation measured at a single station over a full year. Horizontal variations in SRP and ammonia were particularly high, with coefficients of variation often exceeding 100%. The errors associated with sampling at a single station were most pronounced when local accumulations of zooplankton or phytoplankton occurred in the lake. Horizontal variations in conductivity were primarily influenced by the discharge of treated sewage effluent into the central region and the mass transport of water from the more oligotrophic North Basin. Occasionally, more widespread variations in conductivity appeared to be related to spatial variations in photosynthetic activity. The major factor influencing the horizontal distribution of SRP was the discharge of treated effluent into the central region. Despite the intensive recycling of phosphorus, SRP concentrations were nearly always 10–30% higher near the sewage works than elsewhere in the basin. On a few occasions, significant horizontal differences in SRP concentration were also detected within downwind accumulations of crustacean zooplankton. Horizontal variations in total phosphorus were produced by spatial differences in SRP concentration or by local accumulations of phytoplankton or zooplankton. Horizontal differences in ammonia concentration appeared to be produced, both by the effluent discharge and by the turbulent transfer of nutrients from sediments in shallow water. Observations of effluent movement and dispersion demonstrate that wind-induced water movements tend to recirculate nutrient-rich water in the central region and limit mixing along the axis of the basin. The statistical implications of nutrient heterogeneity are discussed in relation to sampling strategy and the possible effects of persistent nutrient concentration gradients on phytoplankton patch formation are assessed.  相似文献   

20.
We performed a meta‐analysis of 31 lake mesocosm experiments to investigate differences in the responses of pelagic food chains and food webs to nutrient enrichment and fish presence. Trophic levels were divided into size‐based functional groups (phytoplankton into highly edible and poorly edible algae, and zooplankton into small herbivores, large herbivores and omnivorous zooplankton) in the food webs. Our meta‐analysis shows that 1) nutrient enrichment has a positive effect on phytoplankton and zooplankton, while fish presence has a positive effect on phytoplankton and a negative effect on zooplankton in the food chains; 2) nutrient enrichment has a positive effect on highly edible algae and small herbivores, but no effect on poorly edible algae, large herbivores and omnivorous zooplankton in the food webs. Planktivorous fish have a positive effect on highly edible algae and small herbivores, a negative effect on large herbivores and omnivorous zooplankton, and no effect on poorly edible algae. Our meta‐analysis confirms that nutrient enrichment and planktivorous fish affect functional groups differentially within trophic levels, revealing important changes in the functioning of food webs. The analysis of fish effects shows the well‐described trophic cascade in the food chain and reveals two trophic cascades in the food web: one transmitted by large herbivores that benefit highly edible phytoplankton, and one transmitted by omnivorous zooplankton that benefit small herbivores. Comparison between the responses of food webs and simple food chains also shows consistent biomass compensation between functional groups within trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号