首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
4.
5.
6.
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.  相似文献   

7.
8.
9.
10.
Since the three main pathways (the Wnt, VegT and BMP pathways) involved in organizer and axis formation in the Xenopus embryo are now characterized, the challenge is to understand their interactions. Here three comparisons were made. Firstly, we made a systematic comparison of the expression of zygotic genes in sibling wild-type, VegT-depleted (VegT(-)), beta-catenin-depleted (beta-catenin(-)) and double depleted (VegT(-)/beta-catenin(-)) embryos and placed early zygotic genes into specific groups. In the first group some organizer genes, including chordin, noggin and cerberus, required the activity of both the Wnt pathway and the VegT pathway to be expressed. A second group including Xnr1, 2, 4 and Xlim1 were initiated by the VegT pathway but their dorsoventral pattern and amount of their expression was regulated by the Wnt pathway. Secondly, we compared the roles of the Wnt and VegT pathways in producing dorsal signals. Explant co-culture experiments showed that the Wnt pathway did not cause the release of a dorsal signal from the vegetal mass independent from the VegT pathway. Finally we compared the extent to which inhibiting Smad 1 phosphorylation in one area of VegT(-), or beta-catenin(-) embryos would rescue organizer and axis formation. We found that BMP inhibition with cm-BMP7 mRNA had no rescuing effects on VegT(-) embryos, while cm-BMP7 and noggin mRNA caused a complete rescue of the trunk, but not of the anterior pattern in beta-catenin(-) embryos.  相似文献   

11.
12.
13.
14.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

15.
16.
Four nodal-related genes (Xnr1-4) have been isolated in Xenopus to date, and we recently further identified two more, Xnr5 and Xnr6. In the present functional study, we constructed cleavage mutants of Xnr5 (cmXnr5) and Xnr6 (cmXnr6) which were expected to act in a dominant-negative manner. Both cmXnr5 and cmXnr6 inhibited the activities of Xnr5 and Xnr6 in co-overexpression experiments. cmXnr5 also inhibited the activity of Xnr2, Xnr4, Xnr6, derrière, and BVg1, but did not inhibit the activity of Xnr1 or activin. Misexpression of cmXnr5 led to a severe delay in initiation of gastrulation and phenotypic changes, including defects in anterior structures, which were very similar to those seen in maternal VegT-depleted embryos. Further, although the expression of Xnr1, Xnr2, and Xnr4 was not delayed in these embryos, it was markedly reduced. Injection of cmXnr5 had no notable effect on expression of Xnr3, Xnr6, derrière, or siamois. Several mesodermal and endodermal markers also showed delayed and decreased expression during gastrulation in cmXnr5-injected embryos. These results suggest that, in early Xenopus embryogenesis, nodal-related genes may heterodimerize with other TGF-beta ligands, and further that one nodal-related gene alone is insufficient for mesendoderm formation, which may require the cooperative interaction of multiple nodal-related genes.  相似文献   

17.
18.
19.
20.
The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited. This inhibition is relieved by TGF- beta signalling, to which the future endoderm cell is sensitised by VegT, resulting in the observed dependence on cell contact for maintained Xsox17 expression. We propose that this change in regulation is a consequence of a VegT-induced repressor, inhibiting direct induction of early endoderm markers by VegT, and contributing to the formation of the boundary of the endodermal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号