首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The shutoff of host DNA synthesis is delayed until about 8 to 10 min after infection when Escherichia coli B/5 cells were infected with bacteriophage T4 mutants deficient in the ability to induce nuclear disruption (ndd mutants). The host DNA synthesized after infection with ndd mutants is stable in the absence of T4 endonucleases II and IV, but is unstable in the presence of these nucleases. Host protein synthesis, as indicated by the inducibility of beta-galactosidase and sodium dodecyl sulfate-polyacrylamide gel patterns of isoptopically labeled proteins synthesize after infection, is shut off normally in ndd-infected cells, even in the absence of host DNA degradation. The Cal Tech wild-type strain of E. coli CT447 was found to restrict growth of the ndd mutants. Since T4D+ also has a very low efficiency of plating on CT447, we have isolated a nitrosoguanidine-induced derivative of CT447 which yields a high T4D+ efficiency of plating while still restricting the ndd mutants. Using this derivative, CT447 T4 plq+ (for T4 plaque+), we have shown that hos DNA degradation and shutoff of host DNA synthesis occur after infection with either ndd98 X 5 (shutoff delayed) or T4D+ (shutoff normal) with approximately the same kinetics as in E. coli strain B/5. Nuclear disruption occurs after infection of CT447 with ndd+ phage, but not after infection with ndd- phage. The rate of DNA synthesis after infection of CT447 T4 plq+ with ndd98 X 5 is about 75% of the rate observed after infection with T4D+ while the burst size of ndd98 X 5 is only 3.5% of that of T4D+. The results of gene dosage experiments using the ndd restrictive host C5447 suggest that the ndd gene product is required in stoichiometric amounts. The observation by thin-section electron microscopy of two distinct pools of DNA, one apparently phage DNA and the other host DNA, in cells infected with nuclear disruption may be a compartmentalization mechanism which separates the pathways of host DNA degradation and phage DNA biosynthesis.  相似文献   

4.
Nuclear disruption after infection of Escherichia coli with a bacteriophage T4 mutant deficient in the ability to induce endonuclease II indicates that either (i) the endonuclease II-catalyzed reaction is not the first step in host deoxyribonucleic acid (DNA) breakdown or (ii) nuclear disruption is independent of nucleolytic cleavage of the host chromosome. M-band analysis demonstrates that the host DNA remains membrane-bound after infection with either an endonuclease II-deficient mutant or T4 phage ghosts.  相似文献   

5.
In contrast to its effect on host DNA synthesis, nuclear disruption in phage T4-infected Escherichia coli B/5 cells has no effect on the shutoff of host RNA synthesis. Host RNA synthesis is shut off normally after infection with T4 multiple mutants that fail to induce both nuclear disruption and host DNA degradation.  相似文献   

6.
Endonuclease II-deficient, ligase-deficient double mutants of phage T4 induce considerably more deoxyribonucleic acid (DNA) synthesis after infection of Escherichia coli B than does the ligase-deficient single mutant. Furthermore, the double mutant can replicate 10 to 15% as well as wild-type T4, whereas the single mutant fails to replicate. When the E. coli host is also deficient in ligase, the double mutant resembles the single mutant. The results indicate that host ligase can substitute for phage ligase when the host DNA is not attacked by the phage-induced endonuclease II.  相似文献   

7.
Cellular location of Mu DNA replicas.   总被引:4,自引:2,他引:2       下载免费PDF全文
To ascertain the form and cellular location of the copies of bacteriophage Mu DNA synthesized during lytic development, DNA from an Escherichia coli lysogen was isolated at intervals after induction of the Mu prophage. Host chromosomes were isolated as intact, folded nucleoids, which could be digested with ribonuclease or heated in the presence of sodium dodecyl sulfate to yield intact, unfolded nucleoid DNA. Almost all of the Mu DNA in induced cells was associated with the nucleoids until shortly before cell lysis, even after unfolding of the nucleoid structure. We suggest that the replicas of Mu DNA are integrated into the host chromosomes, possibly by concerted replication-integration events, and are accumulated there until packaged shortly before cell lysis. Nucleoids also were isolated from induced lambda lysogens and from cells containing plasmid DNA. Most of the plasmid DNA sedimented independently of the unfolded nucleoid DNA, whereas 50% or more of the lambda DNA from induced lysogens cosedimented with unfolded nucleoid DNA. Possible explanations for the association of extrachromosomal DNA with nucleoid DNA are discussed.  相似文献   

8.
9.
Development of Coliphage T5: Ultrastructural and Biochemical Studies   总被引:10,自引:5,他引:5       下载免费PDF全文
Electron microscopic studies of Escherichia coli infected with bacteriophage T5(+) have revealed that host nuclear material disappeared before 9 min after infection. This disappearance seemed to correspond to the breakdown of host deoxyribonucleic acid (DNA) into acid-soluble fragments. Little or no host DNA thymidine was reincorporated into phage DNA, except in the presence of 5-fluorodeoxyuridine (FUdR). Progeny virus particles were observed in the cytoplasm 20 min postinfection. Most of these particles were in the form of hexagonal-shaped heads or capsids, which were filled with electron-dense material (presumably T5 DNA). A small percentage (3 to 4%) of the phage heads appeared empty. On rare occasions, crystalline arrays of empty heads were observed. Nalidixic acid, hydroxyurea, and FUdR substantially inhibited replication of T5 DNA. However, these agents did not prevent virus-induced degradation of E. coli DNA. Most of the phage-specified structures seen in T5(+)-infected cells treated with FUdR or with nalidixic were in the form of empty capsids. Infected cells treated with hydroxyurea did not contain empty capsids. When E. coli F was infected with the DO mutant T5 amH18a (restrictive conditions), there was a small amount of DNA synthesis. Such cells contained only empty capsids, but their numbers were few in comparison to those in cells infected under permissive conditions or infected with T5(+). The cells also failed to lyse. These results confirm other reports which suggest that DNA replication is not required for the synthesis of late proteins. The data also indicate that DNA replication influences the quantity of viral structures being produced.  相似文献   

10.
A bacteriophage T5 mutant has been isolated that is completely deficient in the induction of deoxynucleoside 5'-monophosphatase activity during infection of Escherichia coli F. The mutant bacteriophage has been shown to be deficient in the excretion of the final products of DNA degradation during infection of E. coli F, and about 30% of the host DNA's thymine residues were reinocorporated into phage DNA. During infection with this mutant, host DNA degradation to trichloroacetic acid-soluble products was normal, host DNA synthesis was shut off normally, and second-step transfer was not delayed. However, induction of early phage enzymes and production of DNA and phage were delayed by 5 to 15 min but eventually reached normal levels. The mutant's phenotype strongly suggests that the enzyme's role is to act at the final stage in the T5-induced system of host DNA degradation by hydrolyzing deoxynucleoside 5'-monophosphates to deoxynucleosides and free phosphate; failure to do this may delay expression of the second-step-transfer DNA.  相似文献   

11.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we show that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with bacteriophage T4. At least two modes of inhibition may be differentiated on the basis of their sensitivity to chloramphenicol. The following observations on the inhibition of E2 by phage T4 in the absence of chloramphenicol are described: (i) Simultaneous addition to E. coli B of E2 and a phage mutated in genes 42, 46, and 47 results in a virtually complete block of the DNA solubilization normally induced by E2; the mutation in gene 42 prevents phage DNA synthesis, and the mutations in genes 46 and 47 block a late stage of phage-induced solubilization of host DNA. (ii) This triple mutant inhibits equally well when added at any time during the E2-induced solubilization. (iii) Simultaneous addition to E. coli B of E2 and a phage mutated only in gene 42 results in extensive DNA solubilization, but the amount of residual acid-insoluble DNA (20 to 25%) is more characteristic of phage infection than of E2 addition (5% or less). (iv) denA mutants of phage T4 are blocked in an early stage (endonuclease II) of degradation of host DNA; when E2 and a phage mutated in both genes 42 and denA are added to E. coli B, extensive solubilization of DNA occurs with a pattern identical to that observed upon simultaneous addition of E2 and the gene 42 mutant. (v) However, delaying E2 addition for 10 min after infection by this double mutant allows the phage to develop considerable inhibition of E2. (vi) Adsorption of E2 to E. coli B is not impaired by infection with phage mutated in genes 42, 46, and 47. In the presence of chloramphenicol, the inhibition of E2 by the triple-mutant (genes 42, 46, and 47) still occurs, but to a lesser extent.  相似文献   

12.
Studies with ndd mutants of phage T4, deficient in the ability to induce nuclear disruption, the movement of the host DNA from a largely central location in the cell into close association with the cell membrane, show that nuclear disruption is not essential for host DNA breakdown. Degradation of prelabeled host DNA to acid-soluble products occurs at the same rate in the absence of nuclear disruption as it does in its presence. Moreover, the absence of nuclear disruption results in an alternative pathway of slow degradation of host DNA independent of phage endonuclease II.M-band analyses of association between DNA andmembrane (Earhart et al., 1968) indicate that endonuclease II is required for the release of host DNA from the membrane when nuclear disruption occurs normally, and that the product of at least one of the genes rIIA, rIIB, D1 or D2a (probably D2a, which is necessary for the synthesis of endonuclease IV) is required for DNA release when nuclear disruption does not occur.Analyses of the sizes of host DNA single strands at various times after infection by means of alkaline sucrose density-gradients show that the presence or absence of nuclear disruption has little, if any, effect on the rate of accumulation of single-strand nicks. Neutral sucrose density-gradient analyses suggest that a limited number of double-strand breaks can accumulate in host DNA when endonuclease IV is active, but few, if any, occur when neither endonuclease II or IV is active.Gentle lysis of ndd-infected cells and subsequent sedimentation analysis of the host DNA in neutral sucrose density-gradients reveal that the host chromosomes become “unfolded” within five minutes after infection. Thin-section electron microscopy shows that the host DNA becomes widely dispersed throughout the cytoplasm of cells at late times after infection with ndd mutants. These observations make it very unlikely that nuclear disruption is a passive process which occurs whenever the forces or structures which maintain the normal state of the Escherichia coli nucleoid are altered.All of our data are consistent with a mechanism of nuclear disruption which involves multiple attachment of the host DNA to the cell membrane under the control of the D2b gene of phage T4. We propose that in ndd-infected cells this multiple attachment does not occur, with the result that a limited number of double-strand breaks release much of the host DNA from the cell membrane.  相似文献   

13.
The kinetics of degradation of bacterial deoxyribonucleic acid (DNA) after infection of Escherichia coli with T4D, ultraviolet-irradiated T4D, and two amber mutants, N122 and N94, was studied by zone sedimentation through linear glycerol gradients. Within 5 min after infection with any of the bacteriophages, breakdown of host genome was evident. The first product was a high-molecular-weight material (50S to 70S) and further degradation appeared to occur in discrete steps. Rapid and extensive breakdown of bacterial DNA was seen after infection with am N122 and T4D. Infection with ultraviolet-irradiated phage or with am N94 resulted in an accumulation of high-molecular-weight material. These results suggest that the observed degradation of host DNA begins early and requires sequential action of several phage-induced endo- as well as exodeoxyribonucleases.  相似文献   

14.
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.  相似文献   

15.
The folded genome of Escherichia coli is converted to a slower-sedimenting form within 5 min after infection with bacteriophage T4 or T4nd28(den A)-amN82(44). Chloramphenicol sensitivity and response to UV-irradiation of the phage suggest participation of viral-induced functions.  相似文献   

16.
17.
Heat damage to the chromosome of Escherichia coli K-12.   总被引:2,自引:2,他引:0       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after in vivo heat treatment. Heat treatment of cultures at 50 degree C for 15, 30, and 60 min resulted in in vivo association of the nucleoids with cellular protein. Structural changes, determined by the increase in speed dependence of the nucleoids from heated cells, also occurred. These changes were most likely due to the unfolding of the typical compact nucleoid structure. The nucleoids from heated cells also had notably higher sedimentation coefficients (3,000 to 4,500S) than nucleoids from control cells (1,800S). These nucleoids did not contain greater than normal amounts of membrane phospholipids or ribonucleic acid. We propose that the protein associated with the nucleoids from heated cells causes the observed sedimentation coefficient increases.  相似文献   

18.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

19.
A second function of the S gene of bacteriophage lambda   总被引:8,自引:6,他引:2       下载免费PDF全文
Infection of Escherichia coli by bacteriophage lambda caused an immediate inhibition of uptake by members of all three classes of E. coli active transport systems and made the inner membrane permeable to sucrose and glycine; however, infection stimulated alpha-methyl glucoside uptake. Phage infection caused a dramatic drop in the ATP pool of the cell, but the membrane did not become permeable to nucleotides. Infection by only one phage per cell was sufficient to cause transport inhibition. However, adsorption of phage to the lambda receptor did not cause transport inhibition; DNA injection was required. The inhibition of transport caused by lambda phage infection was transient, and by 20 min after infection, transport had returned to its initial level. The recovery of transport activity appeared to require a lambda structural protein with a molecular weight of 5,500. This protein was present in wild-type phage and at a reduced level in S7 mutant phage but was missing in S2 and S4 mutant phage. Cells infected with S7 phage had a partial recovery of active transport, whereas cells infected with S2 or S4 phage did not recover active transport. Neither the inhibition of transport caused by phage infection nor its recovery were affected by the protein synthesis inhibitors chloramphenicol and rifampin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号