首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

2.
UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides.  相似文献   

3.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

4.
Lipopolysaccharide (LPS), spoT, and cya or crp mutations individually do not affect the minimum inhibitory concentration of mecillinam on Salmonella typhimurium. However, when mutations of two of these types were combined in the same strain, high-level resistance appeared, and increased even further when all three types of mutations were present. Most mutations affecting LPS (rfa, rfb, rfc) showed this behaviour, although to different degrees. The highest resistance to mecillinam was caused by galE and rfc mutations whereas almost no effect was noticed with rfaB or rfaK mutations. This phenomenon appears to be specific for mecillinam since none of several other antibiotics elicited it. Reduction of guanosine tetraphosphate (ppGpp) levels by introduction of a relA mutation did not significantly affect the MIC of mecillinam on strains carrying different combinations of SpoT, galE, and cya or crp mutations. All the strains produced spherical cells in medium with a low concentration (0.05 μg ml?1) of the antibiotic. These results suggest that the antibacterial action of mecillinam on S. typhimurium is somehow dependent on the interaction of LPS, cyclic AMP/cyclic AMP receptor protein (cAMP/CRP), and SpoT. The reported resistance to mecillinam of cya and crp mutants of Escherichia coli K-12 is probably due to the natural LPS defectiveness of this strain.  相似文献   

5.
The galE gene product, UDP-galactose 4-epimerase, mediates the incorporation of galactose in extracellular polysaccharide materials such as the O-side chain of lipopolysaccharide (LPS). The O-side chain in H. pylori LPS has been shown to cross-react with Lewis x and/or y blood group antigens, suggesting its potential involvement in H. pylori-linked autoimmune disease. To study its role in H. pylori LPS biosynthesis, the galE gene was cloned, sequenced, and a galE-knockout H. pylori strain was constructed. The H. pylori galE gene encoded a protein of 344 amino acids with a molecular weight of 39K. The LPS profile from the galE-knockout H. pylori strain showed a lower molecular weight than that of the parental strain, indicating the involvement of the galE gene in LPS biosynthesis of H. pylori. Received: 15 December 1997 / Accepted: 10 March 1998  相似文献   

6.
Current clinical treatments for pneumococcal infections have many limitations and are faced with many challenges. New capsular polysaccharide structures must be explored to cope with diseases caused by different serotypes of Streptococcus pneumoniae. UDP-galactose 4-epimerase (GalE) is an essential enzyme involved in polysaccharide synthesis. It is an important virulence factor in many bacterial pathogens. In this study, we found that two genes (galE sp1 and galE sp2 ) are responsible for galactose metabolism in pathogenic S. pneumoniae TIGR4. Both GalESp1 and GalESp2 were shown to catalyze the epimerization of UDP-glucose (UDP-Glc)/UDP-galactose (UDP-Gal), but only GalESp2 was shown to catalyze the epimerization of UDP-N-acetylglucosamine (UDP-GlcNAc)/UDP-N-acetylgalactosamine (UDP-GalNAc). Interestingly, GalESp2 had 3-fold higher epimerase activity toward UDP-Glc/UDP-Gal than GalESp1. The biochemical properties of GalESp2 were studied. GalESp2 was stable over a wide range of temperatures, between 30 and 70°C, at pH 8.0. The K86G substitution caused GalESp2 to lose its epimerase activity toward UDP-Glc and UDP-Gal; however, substitution C300Y in GalESp2 resulted in only decreased activity toward UDP-GlcNAc and UDP-GalNAc. These results indicate that the Lys86 residue plays a critical role in the activity and substrate specificity of GalESp2.  相似文献   

7.
Foodborne pathogen detection using biomolecules and nanomaterials may lead to platforms for rapid and simple electronic biosensing. Integration of single walled carbon nanotubes (SWCNTs) and immobilized antibodies into a disposable bio-nano combinatorial junction sensor was fabricated for detection of Escherichia coli K-12. Gold tungsten wires (50 µm diameter) coated with polyethylenimine (PEI) and SWCNTs were aligned to form a crossbar junction, which was functionalized with streptavidin and biotinylated antibodies to allow for enhanced specificity towards targeted microbes. In this study, changes in electrical current (ΔI) after bioaffinity reactions between bacterial cells (E. coli K-12) and antibodies on the SWCNT surface were monitored to evaluate the sensor''s performance. The averaged ΔI increased from 33.13 nA to 290.9 nA with the presence of SWCNTs in a 108 CFU/mL concentration of E. coli, thus showing an improvement in sensing magnitude. Electrical current measurements demonstrated a linear relationship (R2 = 0.973) between the changes in current and concentrations of bacterial suspension in range of 102–105 CFU/mL. Current decreased as cell concentrations increased, due to increased bacterial resistance on the bio-nano modified surface. The detection limit of the developed sensor was 102 CFU/mL with a detection time of less than 5 min with nanotubes. Therefore, the fabricated disposable junction biosensor with a functionalized SWCNT platform shows potential for high-performance biosensing and application as a detection device for foodborne pathogens.  相似文献   

8.
The gene galE encoding UDP-galactose 4-epimerase was cloned into E. coli BL21(DE3) from the chromosomal DNA of E. coli strain K-12. High expression of the soluble recombinant epimerase was achieved in the cell lysate. In order to evaluate the use of this epimerase in enzymatic synthesis of important -Gal epitopes (oligosaccharides with a terminal Gal1,3Gal sequence), a new radioactivity assay (1,3-galactosyltransferase coupled assay) was established to characterize its activity in producing UDP-galactose from UDP-glucose. Approximately 2700 units (100 mg) enzyme with a specific activity of 27 U mg–1 protein could be obtained from one liter of bacterial culture. The epimerase was active in a wide pH range with an optimum at pH 7.0. This expression system established a viable route to the enzymatic production of -Gal oligosaccharides to support xenotransplantation research.  相似文献   

9.
Uridine triphosphate (UTP)-glucose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.9) is an enzyme that catalyzes the formation of uridine diphosphate (UDP)-glucose from UTP and glucose-1-phosphate. GalU is involved in virulence in a number of animal-pathogenic bacteria since its product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharide and exopolysaccharide. However, its function in Xanthomonas campestris pv. campestris, the phytopathogen that causes black rot in cruciferous plants, is unclear. Here, we characterized a galU mutant of X. campestris pv. campestris and showed that the X. campestris pv. campestris galU mutant resulted in a reduction in virulence on the host cabbage. We also demonstrated that galU is involved in bacterial attachment, cell motility, and polysaccharide synthesis. Furthermore, the galU mutant showed increased sensitivity to various stress conditions including copper sulfate, hydrogen peroxide, and sodium dodecyl sulfate. In addition, mutation of galU impairs the expression of the flagellin gene fliC as well as the attachment-related genes xadA, fhaC, and yapH. In conclusion, our results indicate involvement of galU in the virulence factor production and pathogenicity in X. campestris pv. campestris, and a role for galU in stress tolerance of this crucifer pathogen.  相似文献   

10.
Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P) that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.  相似文献   

11.
12.
UDP-galactose 4-epimerase (EC 5.1.3.2, Gal E) from Escherichia coli catalyzes the reversible reaction between UDP-galactose and UDP-glucose. In this study, the Gal E gene from E. coli, coding UDP-galactose 4-epimerase, was cloned into pYD1 plasmid and then transformed into Saccharomyces cerevisiae EBY100 for expression of Gal E on the cell surface. Enzyme activity analyses with EBY100 cells showed that the enzyme displayed on the yeast cell surface was very active in the conversion between UDP-Glc and UDP-Gal. It took about 3 min to reach equilibrium from UDP-galactose to UDP-glucose.  相似文献   

13.
LepA is a paralog of EF-G found in all bacteria. Deletion of lepA confers no obvious growth defect in Escherichia coli, and the physiological role of LepA remains unknown. Here, we identify nine strains (ΔdksA, ΔmolR1, ΔrsgA, ΔtatB, ΔtonB, ΔtolR, ΔubiF, ΔubiG or ΔubiH) in which ΔlepA confers a synthetic growth phenotype. These strains are compromised for gene regulation, ribosome assembly, transport and/or respiration, indicating that LepA contributes to these functions in some way. We also use ribosome profiling to deduce the effects of LepA on translation. We find that loss of LepA alters the average ribosome density (ARD) for hundreds of mRNA coding regions in the cell, substantially reducing ARD in many cases. By contrast, only subtle and codon-specific changes in ribosome distribution along mRNA are seen. These data suggest that LepA contributes mainly to the initiation phase of translation. Consistent with this interpretation, the effect of LepA on ARD is related to the sequence of the Shine–Dalgarno region. Global perturbation of gene expression in the ΔlepA mutant likely explains most of its phenotypes.  相似文献   

14.
Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun''s lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality.  相似文献   

15.
Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest.  相似文献   

16.
IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P < 0.001) and increased movement of the IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.  相似文献   

17.
The torque of bacterial flagellar motors is generated by interactions between the rotor and the stator and is coupled to the influx of H+ or Na+ through the stator. A chimeric protein, PotB, in which the N-terminal region of Vibrio alginolyticus PomB was fused to the C-terminal region of Escherichia coli MotB, can function with PomA as a Na+-driven stator in E. coli. Here, we constructed a deletion variant of PotB (with a deletion of residues 41 to 91 [Δ41–91], called PotBΔL), which lacks the periplasmic linker region including the segment that works as a “plug” to inhibit premature ion influx. This variant did not confer motile ability, but we isolated a Na+-driven, spontaneous suppressor mutant, which has a point mutation (R109P) in the MotB/PomB-specific α-helix that connects the transmembrane and peptidoglycan binding domains of PotBΔL in the region of MotB. Overproduction of the PomA/PotBΔL(R109P) stator inhibited the growth of E. coli cells, suggesting that this stator has high Na+-conducting activity. Mutational analyses of Arg109 and nearby residues suggest that the structural alteration in this α-helix optimizes PotBΔL conformation and restores the proper arrangement of transmembrane helices to form a functional channel pore. We speculate that this α-helix plays a key role in assembly-coupled stator activation.  相似文献   

18.
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.  相似文献   

19.
This study was conducted to examine the rate of contamination and the molecular characteristics of enteric bacteria isolated from a selection of food sources in Vietnam. One hundred eighty raw food samples were tested; 60.8% of meat samples and 18.0% of shellfish samples were contaminated with Salmonella spp., and more than 90% of all food sources contained Escherichia coli. The isolates were screened for antibiotic resistance against 15 antibiotics, and 50.5% of Salmonella isolates and 83.8% of E. coli isolates were resistant to at least one antibiotic. Isolates were examined for the presence of mobile genetic elements conferring antibiotic resistance. Fifty-seven percent of E. coli and 13% of Salmonella isolates were found to contain integrons, and some isolates contained two integrons. Sequencing results revealed that the integrons harbored various gene cassettes, including aadA1, aadA2, and aadA5 (resistance to streptomycin and spectinomycin), aacA4 (resistance to aminoglycosides), the dihydrofolate reductase gene cassettes dhfrXII, dfrA1, and dhfrA17 (trimethoprim resistance), the beta-lactamase gene blaPSE1 (ampicillin resistance), and catB3 (chloramphenicol resistance). Plasmids were also detected in all 23 antibiotic-resistant Salmonella isolates and in 33 E. coli isolates. Thirty-five percent of the Salmonella isolates and 76% of the E. coli isolates contained plasmids of more than 95 kb, and some of the isolates contained two large plasmids. Conjugation experiments showed the successful transfer of all or part of the antibiotic resistance phenotypes among the Salmonella and E. coli food isolates. Our results show that enteric bacteria in raw food samples from Vietnam contain a pool of mobile genetic elements and that the transfer of antibiotic resistance can readily occur between similar bacteria.  相似文献   

20.
Impact of rpoS Deletion on Escherichia coli Biofilms   总被引:6,自引:0,他引:6       下载免费PDF全文
Slow growth has been hypothesized to be an essential aspect of bacterial physiology within biofilms. In order to test this hypothesis, we employed two strains of Escherichia coli, ZK126 (ΔlacZ rpoS+) and its isogenic ΔrpoS derivative, ZK1000. These strains were grown at two rates (0.033 and 0.0083 h−1) in a glucose-limited chemostat which was coupled either to a modified Robbins device containing plugs of silicone rubber urinary catheter material or to a glass flow cell. The presence or absence of rpoS did not significantly affect planktonic growth of E. coli. In contrast, biofilm cell density in the rpoS mutant strain (ZK1000), as measured by determining the number of CFU per square centimeter, was reduced by 50% (P < 0.05). Deletion of rpoS caused differences in biofilm cell arrangement, as seen by scanning confocal laser microscopy. In reporter gene experiments, similar levels of rpoS expression were seen in chemostat-grown planktonic and biofilm populations at a growth rate of 0.033 h−1. Overall, these studies suggest that rpoS is important for biofilm physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号