首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.

Purpose

To investigate the effect of ageing on the recovery of ocular blood flow, intravitreal oxygen tension and retinal function during and after intraocular pressure (IOP) elevation.

Methods

Long Evans rats (3- and 14-month-old) underwent acute stepwise IOP elevation from 10 to 120 mmHg (5 mmHg steps each 3 minutes). IOP was then returned to baseline and recovery was monitored for 2 hours. Photopic electroretinograms (ERG) were recorded at each IOP step during stress and at each minute during recovery. Ocular blood flow and vitreal oxygen tension (pO2) were assayed continuously and simultaneously using a combined laser Doppler flow meter (LDF) and an oxygen sensitive fibre-optic probe, respectively. The combined sensor was placed in the vitreous chamber, proximal to the retina. Data were binned into 3 minute intervals during stress and 1 min intervals during recovery. Recovery data was described using a bi-logistic function.

Results

Rats of both ages showed similar susceptibility to IOP elevation, with pO2 showing a closer relationship to ERG than LDF. During recovery, both ages showed a distinctive two-phased recovery for all three measures with the exception of the LDF in 3-month-old rats, which showed only 1 phase. In all animals, LDF recovered fastest (<1 minute), followed by pO2 (<10 minute) and ERG (>1 hour). 14-month-old rats showed surprisingly faster and greater LDF recovery compared to the younger group, with similar levels of pO2 recovery. However, the ERG in these middle-aged animals did not fully recover after two hours, despite showing no difference in susceptibility to IOP during stress compared to the young group.

Conclusions

Young and middle-aged eyes showed similar susceptibility to IOP elevation in terms of pO2, LDF and ERG. Despite this lack of difference during stress, older eyes did not completely recover function, suggesting a more subtle age-related susceptibility to IOP.  相似文献   

2.

Purpose

To examine characteristics of ocular hypertensive subjects and potential associations with estimated cerebrospinal fluid pressure (estCSFP).

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years. Ocular hypertension was defined as intraocular pressure (IOP) >21 mmHg, normal optic nerve head appearance and normal retinal nerve fiber layer thickness. IOP was corrected for its dependence on central corneal thickness (CCT) and corneal curvature radius. Estimated CSFP was calculated as CSFP [mmHg] = 0.44×Body Mass Index [kg/m2]+0.16×Diastolic Blood Pressure [mmHg]−0.18×Age [Years]−1.91. Estimated trans-lamina cribrosa pressure difference (estTLCPD) was IOP–estCSFP.

Results

EstCSFP (10.5±3.6 mmHg versus 9.0±3.7 mmHg; P = 0.003) and estTLCPD (12.0±4.4 mmHg versus 5.4±3.8 mmHg; P<0.001) were higher in the ocular hypertensive group than in the normotensive group. In binary regression analysis, ocular hypertension was associated with increased estCSFP (P = 0.03; odds ratio (OR): 1.08; 95% confidence interval (CI): 1.01, 1.17) after adjusting for prevalence of arterial hypertension (P = 0.07; OR: 1.79; 95%CI: 0.96, 3.34), retinal nerve fiber layer thickness (P = 0.03; OR: 0.97; 95%CI: 0.95, 0.997) and blood glucose concentration (P = 0.006; OR: 1.17; 95%CI: 1.04, 1.30).

Conclusions

Ocular hypertensive subjects (with IOP correction for CCT and corneal curvature) as compared to ocular normotensive subjects had a significantly higher estCSFP in univariate analysis and in multivariate analysis. Despite of a higher estCSFP, estTLCPD was still markedly higher in ocular hypertensive eyes than in ocular normotensive eyes.  相似文献   

3.

Purpose

Loss of retinal ganglion cells in in non-optic neuritis eyes of Multiple Sclerosis patients (MS-NON) has recently been demonstrated. However, the pathological basis of this loss at present is not clear. Therefore, the aim of the current study was to investigate associations of clinical (high and low contrast visual acuity) and electrophysiological (electroretinogram and multifocal Visual Evoked Potentials) measures of the visual pathway with neuronal and axonal loss of RGC in order to better understand the nature of this loss.

Methods

Sixty-two patients with relapsing remitting multiple sclerosis with no previous history of optic neuritis in at least one eye were enrolled. All patients underwent a detailed ophthalmological examination in addition to low contrast visual acuity, Optical Coherence Tomography, full field electroretinogram (ERG) and multifocal visual evoked potentials (mfVEP).

Results

There was significant reduction of ganglion cell layer thickness, and total and temporal retinal nerve fibre layer (RNFL) thickness (p<0.0001, 0.002 and 0.0002 respectively). Multifocal VEP also demonstrated significant amplitude reduction and latency delay (p<0.0001 for both). Ganglion cell layer thickness, total and temporal RNFL thickness inversely correlated with mfVEP latency (r = −0.48, p<0.0001 respectively; r = −0.53, p<0.0001 and r = −0.59, p<0.0001 respectively). Ganglion cell layer thickness, total and temporal RNFL thickness also inversely correlated with the photopic b-wave latency (r = −0.35, p = 0.01; r = −0.33, p = 0.025; r = −0.36, p = 0.008 respectively). Multivariate linear regression model demonstrated that while both factors were significantly associated with RGC axonal and neuronal loss, the estimated predictive power of the posterior visual pathway damage was considerably larger compare to retinal dysfunction.

Conclusion

The results of our study demonstrated significant association of RGC axonal and neuronal loss in NON-eyes of MS patients with both retinal dysfunction and post-chiasmal damage of the visual pathway.  相似文献   

4.

Purpose

To study the prevalence of sustained intraocular pressure (IOP) elevation associated with intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents.

Methods

Prospective comparative study. Non-glaucomatous patients scheduled to receive intravitreal injection of anti-VEGF therapy were recruited from an outpatient eye clinic, Songklanagarind Hospital between April 2013 and March 2014. The IOP was measured by Goldmann applanation tonometer before and at 1 hour, 1 week, 1 month, 3 months, and 6 months after injection. The IOP was compared using the repeated measures analysis. Sustained IOP elevation was defined as either an IOP > 21 mmHg or an increase from baseline ≥ 5 mmHg on two consecutive visits.

Results

Seventy eyes of 54 patients met the inclusion criteria. The most common diagnosis was diabetic macular edema (48%). The mean IOP ± standard deviation (SD) before treatment was 13.7 ± 2.8 mmHg. The means ± SDs after treatment at 1 hour, 1 week, 1 month, 3 months, and 6 months were 11.3 ± 2.6, 13.7 ± 3.6, 14.1 ± 3.3, 14.0 ± 2.3, and 13.7 ± 2.4 mmHg, respectively. A mean of IOP difference at 1 hour postinjection and at baseline was −2.36 ± 2.5 mmHg (P < 0.001). Four of 70 treated eyes (5.7%) developed sustained IOP elevation (IOP ≥ 5 mmHg from baseline on two consecutive visits). The IOP returned to baseline levels after 1 month, in three eyes. One eye had sustained IOP elevation at 3 and 6 months follow-up. Thereafter, IOP returned to baseline level. There was no need of anti-glaucoma medication.

Conclusions

After receiving intravitreal injection of anti-VEGF agent, a small proportion of non-glaucomatous eyes developed a sustained IOP elevation without requiring IOP-lowering treatment. At 1 hour postinjection, there was a significant reduction of the mean IOP compared with the baseline level.  相似文献   

5.
B Lei 《PloS one》2012,7(8):e43856

Purpose

The rodent retina does not exhibit a positive OFF-response in the electroretinogram (ERG), which makes it difficult to evaluate its OFF-pathway functions in vivo. We studied the rod-driven OFF pathway responses by using a dark-adapted 10-Hz flicker ERG procedure in mouse.

Materials and Methods

Conventional ERGs and 10-Hz dark-adapted flicker ERGs were obtained in wild-type mice (C57BL/6), in mice with pure rod (cpfl1) or pure cone (rho−/−) function, and in nob1 mice which have a selective ON-pathway defect. To isolate the response from ON or OFF pathway, glutamate analogs 2-amino-4-phosphobutyric acid (APB, an ON pathway blocker) and cis-2, 3-piperidine-dicarboxylic acid (PDA, an OFF pathway blocker), were injected intravitreally.

Results

The amplitude-intensity profile of the dark-adapted 10-Hz flicker ERG in the wild-type mice exhibits two peaks at middle and high light intensities. The two peaks represent rod- and cone-driven responses respectively. In APB-treated C57BL/6 mice and in nob1 mice, the dark-adapted ERG b-waves were absent. However, both rod- and cone-driven OFF pathway responses were evident with flicker ERG recording. At middle light intensities that activate only rod system, the flicker ERG responses in saline-injected nob1 mice were similar to those in APB-injected cpfl1 mice and wild-type mice. These responses are sensitive to PDA. The amplitudes of these rod-driven OFF pathway responses were approximately 20% of the total rod-driven flicker ERG responses.

Conclusion

We demonstrate that the rod-OFF bipolar cell pathway is functional in the outer retina. The dark-adapted flicker ERG is practical for the evaluation of rod- and cone-driven responses, and the residual OFF pathway signals in subjects with ON pathway defects.  相似文献   

6.
7.

Purpose

To determine the distributions and relation of central corneal thickness (CCT) and intraocular pressure (IOP) by NT-530P in Chinese juveniles, and the effect of gender, age, height, weight and refractive errors on the CTT and IOP.

Methods

CCT and IOP of 982 eyes in 514 juveniles aged from 7 to 18 years were measured with NT-530P. Multi-linear regression and ANOVA analysis were used to analyze the relation of CCT and IOP, and the effect of gender, age, height, weight, refractive condition on CCT and IOP respectively.

Results

The mean CCT and IOP were 554.19±35.46 µm and 15.31±2.57 mmHg. There were significant correlations between the CCT and IOP values. Linear regression analysis revealed a positive correlation between CCT and IOP (r = 0.44, P<0.05). Linear regression equation: IOP = −2.35+0.032CCT, which means the IOP will increase 0.32 mm Hg for every 10-µm increase in CCT. The mean of Corrected IOP (CIOP) was 15.32±2.38 mmHg and had no relation with CCT. There was a negative correlation between refraction degree and CCT (P<0.05), but no correlation between refraction degree and IOP. Multi-linear regression model revealed that the height, weight, age and gender have no effect on the distribution of CCT and IOP respectively.

Conclusions

There is a 0.32 mmHg increase in IOP for every 10-µm increase in CCT. The height, weight, age and gender has no effect on the distribution of CCT and IOP. CCT will become thinner with myopia diopters increases in juveniles. The measurement of CCT is helpful in evaluating the actual IOP correctly.  相似文献   

8.

Background

To investigate the distribution of intraocular pressure (IOP) and refractive errors according to age group in a representative sample of non-glaucomatous Korean adults.

Methods

A total of 7,277 adults (≥19 years) who participated in the Korea National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2011 underwent ophthalmic examination were divided into three groups according to age: the young- (19–39 years), middle- (40–59 years), and old- (≥60 years) age groups. Simple and multiple regression analyses between IOP and various parameters (including the refractive error) were conducted.

Results

The mean IOP of the total population was 14.0±0.1 mmHg [young: 13.9±0.1 mmHg; middle: 14.1±0.1 mmHg; old: 13.8±0.2 mmHg (P for trend = 0.085)]. Myopia and high myopia were more prevalent in the young- (70.8% and 16.1%, respectively), compared to the middle- (44.6% and 10.9%) and old- (8.9% and 2.2%) age groups. Univariate analysis in the total population showed that higher IOP was associated with myopic refractive error, the female gender, higher body mass index (BMI), diabetes, hypertension, and hypercholesterolemia (all P<0.05). In the young- and middle-age groups, higher IOP was associated with myopic refractive error, the female gender, higher BMI, hypercholesterolemia and diabetes (all P<0.05). In the old-age group, the association between IOP and refractive error was not significant (P = 0.828). In multiple linear regression analysis, similar significant relationships between the refractive error and IOP were found in the young- and middle-age groups (beta = −0.08 and −0.12; P = 0.002 and <0.001 for young- and middle-age group, respectively), but not in the old-age group (beta = 0.03; P = 0.728), after adjusting for age, gender, BMI, region of habitation, diabetes, hypertension, and hypercholesterolemia.

Conclusions

Myopic refractive error was an independent predictor of higher IOP in non- glaucomatous eyes, and the association between refractive error and IOP differed according to age.  相似文献   

9.

Purpose

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated.

Methods

A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot.

Results

Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD.

Conclusions

Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.  相似文献   

10.

Purpose

To develop and characterize a mouse model with intraocular pressure (IOP) elevation after laser photocoagulation on the trabecular meshwork (TM), which may serve as a model to investigate the potential of stem cell-based therapies for glaucoma.

Methods

IOP was measured in 281 adult C57BL/6 mice to determine normal IOP range. IOP elevation was induced unilaterally in 50 adult mice, by targeting the TM through the limbus with a 532-nm diode laser. IOP was measured up to 24 weeks post-treatment. The optic nerve damage was detected by electroretinography and assessed by semiautomatic counting of optic nerve axons. Effects of laser treatment on the TM were evaluated by histology, immunofluorescence staining, optical coherence tomography (OCT) and transmission electron microscopy (TEM).

Results

The average IOP of C57BL/6 mice was 14.5±2.6 mmHg (Mean ±SD). After laser treatment, IOP averaged above 20 mmHg throughout the follow-up period of 24 weeks. At 24 weeks, 57% of treated eyes had elevated IOP with the mean IOP of 22.5±2.5 mmHg (Mean ±SED). The difference of average axon count (59.0%) between laser treated and untreated eyes was statistically significant. Photopic negative response (PhNR) by electroretinography was significantly decreased. CD45+ inflammatory cells invaded the TM within 1 week. The expression of SPARC was increased in the TM from 1 to 12 weeks. Histology showed the anterior chamber angle open after laser treatment. OCT indicated that most of the eyes with laser treatment had no synechia in the anterior chamber angles. TEM demonstrated disorganized and compacted extracellular matrix in the TM.

Conclusions

An experimental murine ocular hypertension model with an open angle and optic nerve axon loss was produced with laser photocoagulation, which could be used to investigate stem cell-based therapies for restoration of the outflow pathway integrity for ocular hypertension or glaucoma.  相似文献   

11.

Purpose

To examine a potential association between longitudinal changes in intraocular pressure (IOP), arterial blood pressure and body mass index (BMI) in a population-based setting.

Methods

The longitudinal population-based Beijing Eye Study included 2355 subjects with an age of 45+ years who were examined in 2006 and in 2011. The participants underwent a detailed ophthalmic examination including tonometry and measurement of arterial blood pressure and BMI.

Results

Data on IOP, arterial blood pressure and BMI measured in 2006 and in 2011 were available for 2257 (95.8%) subjects with a mean age of 59.5±9.7 years. The mean change in IOP was −1.25±2.26 mm Hg, mean change in mean blood pressure −7.4±12.1 mmHg, and mean change in BMI was 0.01±2.04 kg/m2. In multivariate analysis, the 5-year change in IOP was significantly associated with a higher change in mean blood pressure (P<0.001; standardized regression coefficient Beta:0.11; regression coefficient B:0.02; 95% confidence interval (CI):0.01,0.03) after adjusting for younger age (P<0.001;Beta:−0.18;B:−0.04;95% CI:−0.05,−0.03), shorter body stature (P = 0.002;Beta:−0.06;B:−0.06;95% CI:−0.03,−0.01), thicker central corneal thickness (P<0.001;Beta:0.19;B:0.02;95% CI:0.01,0.02), deeper anterior chamber depth (P = 0.01;Beta:0.05;B:0.33;95% CI:0.07,0.60), and lower intraocular pressure at baseline (P<0.001;Beta:−0.56;B:−0.42;95% CI:−0.45,−0.39). If the analysis included only longitudinal parameters, the change in IOP was significantly associated with a higher change in mean arterial blood pressure (P<0.001;Beta:0.10;B:0.02;95% CI:0.01,0.03) and a higher change in body mass index (P<0.04;Beta:0.04;B:0.04;95% CI:0.01,0.09).

Conclusions

In the 5-year follow-up of our population-based sample, a change in IOP was associated with a corresponding change in arterial blood pressure and with a corresponding change in body mass index. These longitudinal data support the notion of a physiological relationship between arterial blood pressure, intraocular pressure and body mass index. These findings may be of interest for the discussion of the pathogenesis of glaucomatous optic neuropathy.  相似文献   

12.

Background

Dietary quercetin improves cardiovascular health, relaxes some vascular smooth muscle and has been demonstrated to serve as a substrate for the cyclooxygenase enzyme.

Aims

1. To test quantitatively a potential direct vasodilatory effect on intramural coronary resistance artery segments, in different concentrations. 2. To scale vasorelaxation at different intraluminal pressure loads on such vessels of different size. 3. To test the potential role of prostanoids in vasodilatation induced by quercetin.

Methods

Coronary arterioles (70–240 µm) were prepared from 24 rats and pressurized in PSS, using a pressure microangiometer.

Results

The spontaneous tone that developed at 50 mmHg was relaxed by quercetin in the 10−9 moles/lit concentration (p<0.05), while 10−5 moles/lit caused full relaxation. Significant relaxation was observed at all pressure levels (10–100 mmHg) at 10−7 moles/lit concentration of quercetin. The cyclooxygenase blocker indomethacin (10−5moles/lit) induced no relaxation but contraction when physiological concentrations of quercetin were present in the tissue bath (p<0.02 with Anova), this contraction being more prominent in smaller vessels and in the higher pressure range (p<0.05, Pearson correlation). A further 2–8% contraction could be elicited by the NO blocker L-NAME (10−4 moles/lit).

Conclusion

These results demonstrate that circulating levels of quercetin (10−7 moles/lit) exhibit a substantial coronary vasodilatory effect. The extent of it is commeasurable with that of several other physiological mechanisms of coronary blood flow control. At least part of this relaxation is the result of an altered balance toward the production of endogenous vasodilatory prostanoids in the coronary arteriole wall.  相似文献   

13.

Purpose

To examine potential associations between body height, cerebrospinal fluid pressure (CSFP), trans-lamina cribrosa pressure difference (TLCPD) and prevalence of open-angle glaucoma (OAG) in a population-based setting.

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range:50–93 years). A detailed ophthalmic examination was performed. Based on a previous study with lumbar cerebrospinal fluid pressure (CSFP) measurements, CSFP was calculated as CSFP[mmHg] = 0.44×Body Mass Index[kg/m2]+0.16×Diastolic Blood Pressure[mmHg]-0.18×Age[Years]-1.91

Results

Data of IOP and CSFP were available for 3353 (96.7%) subjects. Taller body height was associated with higher CSFP (P<0.001; standardized correlation coefficient beta:0.13; regression coefficient B:0.29; 95% confidence interval (CI):0.25,0.33) after adjusting for male gender, urban region of habitation, higher educational level, and pulse rate. If TLCPD instead of CSFP was added, taller body height was associated with lower TLCPD (P<0.001;beta:−0.10;B:−0.20;95%CI:−0.25,−0.15). Correspondingly, higher CSFP was associated with taller body height (P = 0.003;beta:0.02;B:0.01;95%CI:0.00,0.02), after adjusting for age, gender, body mass index, pulse, systolic blood pressure, and blood concentration of cholesterol. If IOP was added to the model, higher CSFP was associated with higher IOP (P<0.001;beta:0.02;B:0.02;95%CI:0.01,0.03). TLCPD was associated with lower body height (P = 0.003;beta:−0.04;B −0.02,95%CI:−0.04,−0.01) after adjusting for age, body mass index, systolic blood pressure, pulse, blood concentrations of triglycerides, axial length, central corneal thickness, corneal curvature radius, and anterior chamber depth. Adding the prevalence of OAG to the multivariate analysis revealed, that taller body height was associated with a lower OAG prevalence (P = 0.03;beta:−0.03;B:−1.20;95%CI:−2.28,−0.12) after adjusting for educational level and gender.

Conclusions

Taller body height was associated with higher CSFP and lower TLCPD (and vice versa), after adjusting for systemic and ocular parameters. Parallel to the associations between a higher prevalence of glaucoma with a lower CSFP or higher TLCPD, taller body height was associated with a lower prevalence of OAG.  相似文献   

14.

Purpose

To evaluate retinal function by intraoperative electroretinograms (ERGs) before and after core vitrectomy.

Design

Retrospective consecutive case series.

Method

Full-field photopic ERGs were recorded prior to the beginning and just after core vitrectomy using a sterilized contact lens electrode in 20 eyes that underwent non-complicated vitreous surgery. A light-emitted diode was embedded into the contact lens, and a stimulus of 150 ms on and 350 ms off at 2 Hz was delivered. The amplitudes and latencies of the a-, b-, and d-waves, photopic negative response (PhNR), and oscillatory potentials (OPs) were analyzed. The intraocular temperature at the mid-vitreous was measured at the beginning and just after the surgery with a thermoprobe.

Results

The intraocular temperature was 33.2 ± 1.3°C before and 29.4 ± 1.7°C after the vitrectomy. The amplitudes of the PhNR and OPs were significantly smaller after surgery, and the latencies of all components were prolonged after the surgery. These changes were not significantly correlated with the changes of the temperature.

Conclusion

Retinal function is reduced just after core vitrectomy in conjunction with significant temperature reduction. The differences in the degree of alterations of each ERG component suggests different sensitivity of each type of retinal neuron.  相似文献   

15.

Purpose

To assess associations of the trans-lamina cribrosa pressure difference (TLCPD) with glaucomatous optic neuropathy.

Methods

The population-based Central India Eye and Medical Study included 4711 subjects. Based on a previous study with lumbar cerebrospinal fluid pressure (CSFP) measurements, CSFP was calculated as CSFP[mmHg] = 0.44 Body Mass Index[kg/m2]+0.16 Diastolic Blood Pressure[mmHg]−0.18×Age[Years] −1.91. TLCPD was IOP–CSFP.

Results

Mean TLCPD was 3.64±4.25 mm Hg in the non-glaucomatous population and 9.65±8.17 mmHg in the glaucomatous group. In multivariate analysis, TLCPD was associated with older age (P<0.001; standardized coefficient beta:0.53; regression coefficient B:0.18; 95% confidence interval (CI):0.17, 0.18), lower body mass index (P<0.001; beta: −0.28; B: −0.36; 95%CI: −0.38, −0.31), lower diastolic blood pressure (P<0.001; beta: −0.31; B: −0.12; 95%CI: −0.13, −0.11), higher pulse (P<0.001; beta:0.05; B:0.02; 95%CI:0.01,0.2), lower body height (P = 0.02; beta: −0.02; B: −0.01; 95%CI: −0.02,0.00), higher educational level (P<0.001; beta:0.04; B:0.15; 95%CI:0.09,0.22), higher cholesterol blood concentrations (P<0.001; beta:0.04; B:0.01; 95%CI:0.01,0.01), longer axial length (P = 0.006; beta:0.03; B:0.14; 95%CI:0.04,0.24), thicker central cornea (P<0.001; beta:0.15; B:0.02; 95%CI:0.02,0.02), higher corneal refractive power (P<0.001; beta:0.07; B:0.18; 95%CI:0.13,0.23) and presence of glaucomatous optic neuropathy (P<0.001; beta:0.11; B:3.43; 95%CI:2.96,3.99). Differences between glaucomatous subjects and non-glaucomatous subjects in CSFP were more pronounced for open-angle glaucoma (OAG) than for angle-closure glaucoma (ACG) (3.0 mmHg versus 1.8 mmHg), while differences between glaucomatous subjects and non-glaucomatous subjects in IOP were higher for ACG than for OAG (8.5 mmHg versus 3.0 mmHg). Presence of OAG was significantly associated with TLCPD (P<0.001; OR:1.24; 95%CI:1.19,1.29) but not with IOP (P = 0.08; OR:0.96; 95%CI:0.91,1.00). Prevalence of ACG was significantly associated with IOP (P = 0.04; OR:1.19; 95%CI:1.01,1.40) but not with TLCPD (P = 0.92).

Conclusions

In OAG, but not in ACG, calculated TLCPD versus IOP showed a better association with glaucoma presence and amount of glaucomatous optic neuropathy. It supports the notion of a potential role of low CSFP in the pathogenesis of open-angle glaucoma.  相似文献   

16.
17.

Background

In the clinic, variations in circadian rhythm are evident in patients with cardiovascular disease, and the risk of cardiovascular events increases when rhythms are disrupted. In this study, we focused on the role of the circadian gene period2 (per2) in mobilization and function of endothelial progenitor cells (EPCs) in vitro and in vivo after myocardial infarction (MI) in mice.

Methods and Results

MI was produced by surgical ligation of the left anterior descending coronary artery in mice with and without per2 deficiency. Trans-thoracic echocardiography was used to evaluate cardiac function in mice. Per2−/− mice with MI showed decreased cardiac function and increased infarct size. The number of CD34+ cells and capillary density were decreased in the myocardium of per2−/− mice on immunohistochemistry. Flow cytometry revealed decreased number of circulating EPCs in per2−/− mice after MI. In vitro, per2−/− EPCs showed decreased migration and tube formation capacity under hypoxia. Western blot analysis revealed inhibited activation of extracellular signal-regulated kinase and Akt signaling in the bone marrow of per2−/− mice and inhibited PI3K/Akt expression in per2−/− EPCs under hypoxia.

Conclusions

Per2 modulates EPC mobilization and function after MI, which is important to recovery after MI in mice.  相似文献   

18.

Purpose

To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT).

Methods

Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae.

Results

RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes.

Conclusions

In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.  相似文献   

19.

Purpose

To compare in young and old rats longitudinal measurements of retinal nerve fiber layer thickness (RNFLT) and axonal transport 3-weeks after chronic IOP elevation.

Method

IOP was elevated unilaterally in 2- and 9.5-month-old Brown-Norway rats by intracameral injections of magnetic microbeads. RNFLT was measured by spectral domain optical coherence tomography. Anterograde axonal transport was assessed from confocal scanning laser ophthalmolscopy of superior colliculi (SC) after bilateral intravitreal injections of cholera toxin-B-488. Optic nerve sections were graded for damage.

Results

Mean IOP was elevated in both groups (young 37, old 38 mmHg, p = 0.95). RNFL in young rats exhibited 10% thickening at 1-week (50.9±8.1 µm, p<0.05) vs. baseline (46.4±2.4 µm), then 7% thinning at 2-weeks (43.0±7.2 µm, p>0.05) and 3-weeks (43.5±4.4 µm, p>0.05), representing 20% loss of dynamic range. RNFLT in old rats showed no significant change at 1-week (44.9±4.1 µm) vs. baseline (49.2±5.3 µm), but progression to 22% thinning at 2-weeks (38.0±3.7 µm, p<0.01) and 3-weeks (40.0±6.6 µm, p<0.05), representing 59% loss of dynamic range. Relative SC fluorescence intensity was reduced in both groups (p<0.001), representing 77–80% loss of dynamic range and a severe transport deficit. Optic nerves showed 75–95% damage (p<0.001). There was greater RNFL thinning in old rats (p<0.05), despite equivalent IOP insult, transport deficit and nerve damage between age groups (all p>0.05).

Conclusion

Chronic IOP elevation resulted in severely disrupted axonal transport and optic nerve axon damage in all rats, associated with mild RNFL loss in young rats but a moderate RNFL loss in old rats despite the similar IOP insult. Hence, the glaucomatous injury response within the RNFL depends on age.  相似文献   

20.

Background and Purpose

Thrombus characterization is increasingly considered important in predicting treatment success for patients with acute ischemic stroke. The lack of intensity contrast between thrombus and surrounding tissue in CT images makes manual delineation a difficult and time consuming task. Our aim was to develop an automated method for thrombus measurement on CT angiography and validate it against manual delineation.

Materials and Methods

Automated thrombus segmentation was achieved using image intensity and a vascular shape prior derived from the segmentation of the contralateral artery. In 53 patients with acute ischemic stroke due to proximal intracranial arterial occlusion, automated length and volume measurements were performed. Accuracy was assessed by comparison with inter-observer variation of manual delineations using intraclass correlation coefficients and Bland–Altman analyses.

Results

The automated method successfully segmented the thrombus for all 53 patients. The intraclass correlation of automated and manual length and volume measurements were 0.89 and 0.84. Bland-Altman analyses yielded a bias (limits of agreement) of −0.4 (−8.8, 7.7) mm and 8 (−126, 141) mm3 for length and volume, respectively. This was comparable to the best interobserver agreement, with an intraclass correlation coefficients of 0.90 and 0.85 and a bias (limits of agreement) of −0.1 (−11.2, 10.9) mm and −17 (−216, 185) mm3.

Conclusions

The method facilitates automated thrombus segmentation for accurate length and volume measurements, is relatively fast and requires minimal user input, while being insensitive to high hematocrit levels and vascular calcifications. Furthermore, it has the potential to assess thrombus characteristics of low-density thrombi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号