首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse egg activation, which includes release from meiotic metaphase II arrest, results from fertilization-induced increase in intracellular calcium concentration ([Ca2+]i). However, during egg activation caused by exposure to the protein synthesis inhibitor, cycloheximide, [Ca2+]i did not change. Although eggs fertilized in the presence of microtubule inhibitors remain arrested at metaphase, eggs treated for 32 hr with cycloheximide and the microtubule inhibitor, colcemid, formed nuclei. In untreated eggs aged in culture for 24 hr, the microtubule spindles became deformed. These eggs formed nuclei after exposure to cycloheximide, but not the calcium ionophore A23187. Our results indicate that eggs in which protein synthesis is inhibited are released from metaphase without an increase in [Ca2+]i, and despite disruption of the Spindle. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Non-specific L-type calcium channel blockers, such as verapamil (≥50 μM), induce metaphase-II (M-II) arrest and apoptosis in aged rat eggs cultured in Ca2+-deficient medium. However, the effects of extracellular Ca2+ on verapamil-induced M-II arrest and apoptosis have not yet been reported. We have demonstrated that postovulatory aging induced exit from M-II arrest by extruding a second polar body, a morphological sign of spontaneous egg activation (SEA). Verapamil inhibited SEA and induced egg apoptosis in a dose-dependent manner in Ca2+-deficient medium. The initiation of apoptotic features was observed at 50 μM of verapamil. Extracellular Ca2+ (1.80 mM) reduced intracellular H2O2 level, bax protein expression, caspase-3 activity, DNA fragmentation and protected against 50 μM, but not higher concentrations of ≥100 μM in verapamil-induced egg apoptosis. These results suggest that extracellular Ca2+ ions have a role during SEA and protect against verapamil-induced apoptosis in aged rat eggs.  相似文献   

3.
Fertilized eggs of the mollusk Ilyanassa obsoleta (Nassarius obsoletus) form large blebs resembling polar lobes within 12 min of exposure to solutions of isotonic CaCl2, whereas control eggs in sea water remain spherical. Under identical conditions, fertilized eggs of the sea urchin, Strongylocentrotus purpuratus, an organism which normally does not form polar lobes, do not form blebs upon exposure to solutions of isotonic CaCl2. The calcium-induced blebbing in Ilyanassa still occurs if other cations such as Na+, Mg2+, or Mn2+ are present in addition to Ca2+, but not if comparable concentrations of K+ are present. Cytochalasin B prevents the calcium-induced blebbing, whereas colchicine does not. Cytokinesis in both Ilyanassa and Strongylocentrotus and normal polar lobe formation in Ilyanassa appear to require exogenous K+ but not exogenous Ca2+. Preliminary electron microscopy of Ilyanassa eggs exposed to isotonic solutions of CaCl2 has shown microfilaments in the cortical cytoplasm in the region of the bleb constriction but no microfilaments in spherical control eggs in sea water. These data suggest that high concentrations of exogenous Ca2+ trigger the polymerization and contraction of a ring of microfilaments in the cortical cytoplasm of the Ilyanassa egg which results in the formation of a lobelike bleb of cytoplasm. The observation that K+ antagonizes this Ca2+-induced blebbing has led to the formulation of a theory which postulates that the ratio of intracellular Ca2+ to intracellular K+ is critical in the control of polar lobe formation and cytokinesis.  相似文献   

4.
The cytoplasm of mature eggs of Xenopus laevis was found to contain a cytostatic factor (CSF) which induces cleavage arrest at metaphase when microinjected into one blastomere of a two-cell embryo of Xenopus laevis or Rana pipiens. The Rana CSF was found to be incapable of arresting mitosis in Xenopus embryos. Both Xenopus and Rana CSF were stabilized during the transfer procedure by Ca2+-chelation in the donor egg. The Xenopus CSF was not present in the germinal vesicle of immature oocytes, but arose in the cytoplasm at the time of germinal vesicle breakdown and subsequently disappeared at the time of fertilization or egg activation.  相似文献   

5.
Ca2+ signaling pathways play important roles to complete meiosis from metaphase II arrest in vertebrate oocytes. However, less is known about the molecular mechanism of completion of meiosis in Drosophila females. Here, we provide direct evidence that calcineurin, a Ca2+/calmodulin (CaM)-dependent phosphatase, is essential for meiotic progression beyond metaphase I in Drosophila oocytes. Oocytes from germline clones lacking CanB2, a calcineurin regulatory subunit B, failed to complete meiosis after egg activation, and laid eggs exhibited a meiotic arrested anaphase I chromosome configuration. Genetic analyses suggest that calcineurin activity is regulated by Sarah (Sra), a family member of regulators of calcineurin (RCANs), through a Sra phosphorylation-dependent mechanism. Our results support a view in which the phosphorylation of Sra not only acts to relieve the inhibitory effects of Sra, but also acts to activate calcineurin, thus explaining the role of RCAN proteins as positive regulators of calcineurin.  相似文献   

6.
Jellyfish eggs neither undergo apparent cortical reaction nor show any significant change in the membrane potential at fertilization, but nevertheless show monospermy. Utilizing the perfectly transparent eggs of the hydrozoan jellyfish Cytaeis uchidae, here we show that the polyspermy block is accomplished via a novel mechanism: a collaboration between Ca2+ and mitogen-activated protein kinase (MAPK). In Cytaeis, adhesion of a sperm to the animal pole surface of an egg was immediately followed by sperm–egg fusion and initiation of an intracellular Ca2+ rise from this site. The elevated Ca2+ levels lasted for several minutes following the sperm–egg fusion. The Ca2+ rise proved to be necessary and sufficient for a polyspermy block, as inhibiting a Ca2+ rise with EGTA promoted polyspermy, and conversely, triggering a Ca2+ rise by inositol 1,4,5-trisphosphate (IP3) or excess K+ immediately abolished the egg’s capacity for sperm–egg fusion. A Ca2+ rise at fertilization or by artificial stimulations evoked dephosphorylation of MAPK in eggs. The eggs in which phosphorylated MAPK was maintained by injection of mRNA for MAPK kinase kinase (Mos), like intact eggs, exhibited a Ca2+ rise at fertilization or by IP3 injection, and shut down the subsequent sperm–egg fusion. However, the Mos-expressing eggs became capable of accepting sperm following the arrest of Ca2+ rise. In contrast, addition of inhibitors of MAPK kinase (MEK) to unfertilized eggs caused MAPK dephosphorylation without elevating Ca2+ levels, and prevented sperm–egg fusion. Rephosphorylation of MAPK by injecting Mos mRNA after fertilization recovered sperm attraction, which is known to be another MAPK-dependent event, but did not permit subsequent sperm–egg fusion. Thus, it is possible that MAPK dephosphorylation irreversibly blocks sperm–egg fusion and reversibly suppresses sperm attraction. Collectively, our data suggest that both the fast and late mechanisms dependent on Ca2+ and MAPK, respectively, ensure a polyspermy block in jellyfish eggs.  相似文献   

7.
Cortical deformation and polar body extrusion are the principal events that occur at fertilization in the ascidian egg. We demonstrated that the intracellular Ca2+ concentration ([Ca2+]i) in the fertilized egg of Ciona savignyi increased at egg deformation (main peak) and then several small Ca2+ spikes (1st spikes) appeared before the first polar body extrusion. Brief Ca2+ spikes (2nd spikes), then appeared in the period between the first and second polar body extrusion. When eggs were fertilized in Ca2+-free artificial seawater, the main peak and 1st spikes appeared, but the 2nd spikes did not, suggesting that the Ca2+ required for the main peak and 1st spikes is released from the intracellular store in this species and that extracellular Ca2+ is required for the 2nd spikes. When [Ca2+]i was clamped at a low level (0.03–0.13 μmol/L) by injecting the egg with low-Ca2+ buffers and the egg was then inseminated, deformation, polar body extrusion and pronucleus formation were suppressed. In contrast, egg deformation and first polar body extrusion were induced without insemination when [Ca2+]i was 0.9 μmol/L. A higher Ca2+ concentration of 1.2–10.1 μmol/L was required for extrusion of the second polar body and pronucleus formation. These data suggest that sequential Ca2+ increases (i.e. main peak and 1st and 2nd spikes) are prerequisite for the deformation and polar body extrusion of the egg. Furthermore, in eggs arrested at the second meiotic metaphase after first polar body extrusion by the injection of Ca2+ buffer, subsequent injection of excess Ca2+ caused formation of an irregular second polar body-like protrusion, suggesting latent arrest at the second meiotic metaphase in the ascidian egg.  相似文献   

8.
The newt, Cynops pyrrhogaster, exhibits physiological polyspermic fertilization, in which several sperm enter an egg before egg activation. An intracellular Ca2+ increase occurs as a Ca2+ wave at each sperm entry site in the polyspermic egg. Some Ca2+ waves are preceded by a transient spike-like Ca2+ increase, probably caused by a tryptic protease in the sperm acrosome at the contact of sperm on the egg surface. The following Ca2+ wave was induced by a sperm factor derived from sperm cytoplasm after sperm–egg membrane fusion. The Ca2+ increase in the isolated, cell-free cytoplasm indicates that the endoplasmic reticulum is the major Ca2+ store for the Ca2+ wave. We previously demonstrated that citrate synthase in the sperm cytoplasm is a major sperm factor for egg activation in newt fertilization. In the present study, we found that the activation by the sperm factor as well as by fertilizing sperm was prevented by an inhibitor of citrate synthase, palmitoyl CoA, and that an injection of acetyl-CoA or oxaloacetate caused egg activation, indicating that the citrate synthase activity is necessary for egg activation at fertilization. In the frog, Xenopus laevis, which exhibits monospermic fertilization, we were unable to activate the eggs with either the homologous sperm extract or the Cynops sperm extract, indicating that Xenopus sperm lack the sperm factor for egg activation and that their eggs are insensitive to the newt sperm factor. The mechanism of egg activation in the monospermy of frog eggs is quite different from that in the physiological polyspermy of newt eggs.  相似文献   

9.
Resumption of meiosis at fertilization is mediated by increased levels of calcium which activate several calcium-dependent enzymes. Calpain, a neutral calcium-activated thiol protease, is present in the cytoplasm of many cells. Its activation is associated with limited autolysis and relocalization in the cell. Calpain is thought to participate in the regulation of mitosis and resumption of meiosis in Xenopus oocytes. In this study we followed the activation and localization of calpain during maturation and fertilization in rat eggs using a polyclonal antibody raised against chicken muscle calpain. A band of 80 kDa was detected in GV oocytes and its level increased in unfertilized MII eggs. At the early stages of fertilization, we observed a transient decrease in the level of calpain which was regained at the pronuclear stage. Adding Ca2+ to lysate of MII eggs resulted in an additional band, representing the degraded fragment of the activated protein. In eggs activated by ionomycin, calpain level decreased, followed by an increase in a dynamic similar to that observed in fertilized eggs. Egg activation also led to changes in calpain localization. A homogenous distribution was observed in GV and in MII eggs, while in activated eggs it was localized predominantly overlying the metaphase plate. In the current study we demonstrate the presence of calpain in the rat egg. During maturation, calpain level increases; however, during egg activation, in response to [Ca2+]i changes, calpain undergoes autolysis, translocation, and fluctuation in its level. We therefore suggest a correlation between calpain activation and fertilization. Mol. Reprod. Dev. 48:119–126, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
In few mammalian species including rat, post-ovulatory aging induces abortive spontaneous egg activation (SEA), which is morphologically characterized by exit from metaphase-II (M-II) arrest. A possibility exists that the RyR channel-mediated insufficient increase of cytosolic free Ca2+ level could be one of the causes for post-ovulatory aging-induced abortive SEA. To test this possibility, eggs collected after 17 h post-hCG surge were cultured with or without various concentrations of nifedipine (NF), ruthenium red (RR), and KN-93 for 3 h in vitro. Morphological changes characteristic of abortive SEA, cytosolic free Ca2+ level, cyclin B1 level, and meiotic status were analyzed. Data of the present study indicate that NF and RR inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. Further, RR protected against RyR channel as well as caffeine-mediated increase of cytosolic free Ca2+ level. In addition, KN-93 inhibited post-ovulatory aging-induced abortive SEA in a concentration-dependent manner. An increase of cytosolic free Ca2+ level was associated with a reduction of cyclin B1 level during post-ovulatory aging-induced abortive SEA. These data indirectly suggest the involvement of RyR channels in the increase of cytosolic free Ca2+ level. The increased cytosolic free Ca2+ level triggers cyclin B1 degradation possibly through CaMK-II activity during post-ovulatory aging-induced abortive SEA in rat eggs cultured in vitro.  相似文献   

11.
Platelet activation must be tightly controlled to provide an effective, but not excessive, response to vascular injury. Cytosolic calcium is a critical regulator of platelet function, including granule secretion, integrin activation, and phosphatidylserine (PS) exposure. Here we report that the novel protein kinase C isoform, PKCθ, plays an important role in negatively regulating Ca2+ signaling downstream of the major collagen receptor, glycoprotein VI (GPVI). This limits PS exposure and so may prevent excessive platelet procoagulant activity. Stimulation of GPVI resulted in significantly higher and more sustained Ca2+ signals in PKCθ−/− platelets. PKCθ acts at multiple distinct sites. PKCθ limits secretion, reducing autocrine ADP signaling that enhances Ca2+ release from intracellular Ca2+ stores. PKCθ thereby indirectly regulates activation of store-operated Ca2+ entry. However, PKCθ also directly and negatively regulates store-independent Ca2+ entry. This pathway, activated by the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol, was enhanced in PKCθ−/− platelets, independently of ADP secretion. Moreover, LOE-908, which blocks 1-oleoyl-2-acetyl-sn-glycerol-induced Ca2+ entry but not store-operated Ca2+ entry, blocked the enhanced GPVI-dependent Ca2+ signaling and PS exposure seen in PKCθ−/− platelets. We propose that PKCθ normally acts to restrict store-independent Ca2+ entry during GPVI signaling, which results in reduced PS exposure, limiting platelet procoagulant activity during thrombus formation.  相似文献   

12.
The present study was designed to investigate whether calcium ionophore-induced activation and apoptosis are associated with the generation of hydrogen peroxide (H2O2) in rat eggs cultured in vitro. Culture of metaphase-II (M-II) arrested eggs in Ca2+/Mg2+-deficient medium did not induce egg activation, while a second polar body was observed in 20% of eggs when cultured in Ca2+/Mg2+-supplemented medium. In Ca2+/Mg2+-deficient medium, lower concentrations of calcium ionophore (0.2,0.4 and 0.8 µm) not only induced egg activation in a dose-dependent manner but also generation of intracellular H2O2 (84.40±0.50 ng/egg) when compared to control eggs (80.46±1.34 ng/egg). The higher concentration of calcium ionophore (1.6 µm) induced apoptosis and pronounced generation of intracellular H2O2 (92.43±0.93 ng/egg) in treated eggs. Conversely, cell-permeant antioxidant such as 2(3)-tert-butyl-4-hydroxyanisole (BHA) reduced intracellular H2O2 level (81.20±1.42 ng/egg) and protected against calcium ionophore-induced morphological changes characteristics of egg activation and apoptosis. These results clearly suggest that calcium ionophore-induced activation and apoptosis are associated with the generation of intracellular H2O2 in rat eggs.  相似文献   

13.
Summary

The role of Ca2+ in activation and early development of locust eggs was examined through measurement of ooplasmic Ca2+ levels before and after fertilization, and through experimental activation of unfertilized eggs. Ooplasmic pCa (i.e. the negative logarithm of Ca2+ activity) measured in intact eggs decreased from 5.35 before fertilization, to 4.77 and 3.00 by 1 day and 3 days after fertilization, respectively. pCa was also determined for samples of ooplasm collected by rupturing eggs under paraffin oil. The pCa was 5.10 in ooplasm isolated from unfertilized eggs, and 3.84 in ooplasm collected from eggs within 4 h of fertilization. Ooplasmic pCa remained between 3.97 and 3.12 from 1–6 days after fertilization. Since a decline in pCa indicates an increase in ooplasmic Ca2+ activity, the data suggest that regulation of ooplasmic Ca2+ during post-fertilization development involves release of Ca2+ from internal stores. Experimental egg activation was examined in eggs dissected from the oviducts before fertilization and incubated on moist filter paper. Some eggs were first immersed in experimental solutions for 30–60 minutes before incubation. The presence of an embryo 2 or 4 days after fertilization or experimental treatment was used as an indicator of egg activation. Activation occurred in 92% and 12% of fertilized and untreated eggs, respectively. The percentage of unfertilized eggs which activated increased to 47% if eggs were soaked 30–60 minutes in physiological saline, and to as much as 65%-68% if eggs were injected with Ca2+ buffers or if a Ca2+ action potential was evoked. Up to 36% and 42% of unfertilized eggs activated after incubation in Ca2+-free salines or in the presence of the Ca2+-channel blocker Cd2+, respectively. Taken together, the results suggest that entry of external Ca2+ through voltage dependent channels increases the proportion of eggs which activate, but is not an absolute requirement for activation.  相似文献   

14.
Unfertilized eggs of the newt, Cynops pyrrhogaster, are arrested at the second meiotic metaphase, with activity of the M‐phase promoting factor (MPF) maintained at a high level. After fertilization, the eggs resume the cell cycle, and emit the second polar body. When the change in [Ca2+]i in the fertilized eggs was monitored by aequorin, an early increase in [Ca2+]i was observed 5–10 min after insemination and continued for about 30 sec. A late increase in [Ca2+]i then occurred 10–15 min after fertilization and continued for 30–40 min. The injection of 1,2‐Bis (2 aminophenoxy) ethane‐N,N,N′,N′,‐tetraacetic acid (BAPTA) into unfertilized eggs inhibited reinitiation of the cell cycle after fertilization. Western blot analysis with antibodies against cyclin B1 or Mos indicated that both cyclin B1 and Mos were present in unfertilized eggs, but both disappeared within 30 min after fertilization. Treatment with Ca2+‐ionophore decreased both cyclin B1 and Mos. Chymotryptic activity in Cynops egg extracts was not significantly increased after fertilization or activation by treatment with the Ca2+‐ionophore. No change in [Ca2+]i was observed following treatment with cycloheximide, but the amount of both cyclin B1 and Mos rapidly decreased. These results indicate that resumption of meiosis in Cynops eggs is induced by an increase in [Ca2+]i at fertilization, which causes degradation of both cyclin B1 and Mos by inhibition of de novo synthesis of those proteins. Mol. Reprod. Dev. 53:341–349, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an “eat-me” signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a “two-step” pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1.  相似文献   

16.
The ability of brain nuclei to give rise to condensed chromosomes was studied inRana pipiens eggs which had undergone meiotic maturation in vivo, in blastomeres of two-cell embryos which had been arrested at metaphase by the injection of cytostatic factor (CSF) from mature eggs, and in immature fully grown ovarian oocytes with and without prior CSF injection. Chromosomes from brain nuclei were found to condense within 4 h in mature eggs and this chromosome condensation activity was enhanced by the chelation of free Ca2+ in the nuclear isolation medium. Chromosomes also condensed in CSF-arrested blastomeres whether they were placed in the blastomere 30 min before the CSF injection or as long as 22 h after the CSF. Both the Ca2+-sensitive CSF, 1CSF, and the Ca2+-insensitive CSF, 2CSF, resulted in chromosome condensation within arrested blastomeres. The condensation was accompanied by the formation of multipolar spindles and asters. However, it was found that cytoplasm in CSF-arrested blastomeres does not arrest mitosis at metaphase when transferred into a cleaving blastomere. Other experiments demonstrated that chromosome condensation does not occur in ovarian oocytes even when supplied with CSF. The results are interpreted as indicating that CSF does not directly bring about chromosome condensation, but arrests the cell cycle at metaphase and stabilizes the cytoplasmic conditions of metaphase which, in turn, induce chromosome condensation in foreign nuclei as well as spindle and aster formation.  相似文献   

17.
One of the more striking morphological events during egg activation is exocytosis of the cortical granules. In the frog egg, the wave of cortical granule exocytosis takes about 100 sec to traverse the animal half, and travels slower in the vegetal half. We examined cortical granule exoctyosis during activation with respect to this animal/vegetal difference. In eggs which were acquiring the ability to be activated (recovering from CO2-intoxication or undergoing meiotic maturation), animal half cortical granules became capable of responding to activating stimuli prior to vegetal half ones. Since Ca2+ is involved in exocytosis, we examined the effect of Ca2+ on cortical granule breakdown in vitro. There was no difference in sensitivity to Ca2+ of cortical granules from immature vs. mature eggs, but animal half cortical granules were more sensistive to Ca2+ than vegetal half ones. Finally, we found that prick-activation of eggs at the vegetal pole was frequently unsuccessful but would occur when external Ca2+ was raised. These experiments show that there are regional differences in the frog egg with respect to cortical granule responsiveness, and they suggest that the differences are due to Ca2+ sensitivity.  相似文献   

18.
Embryogenesis in vertebrates and marine invertebrates begins when a mature oocyte is fertilized, resulting in a rise in intracellular calcium (Ca2+) that activates development. Insect eggs activate without fertilization via an unknown signal imparted to the egg during ovulation or egg laying. One hypothesis for the activating signal is that deformation of eggs as they pass through a tight orifice provides a mechanical stimulus to trigger activation. Ovulation could produce two forms of mechanical stimulus: external pressure resulting from the passage of oocytes from the ovary into the narrow oviducts, and osmotic pressure caused by hydration-induced swelling of the oocyte within the oviducts. Ovulation could also trigger activation by placing the oocyte in a new environment that contains an activating substance, such as a particular ion. Here, we provide the first evidence that Drosophila oocytes require Ca2+ for activation, and that activation can be triggered in vitro by mechanical stimuli, specifically osmotic and hydrostatic pressure. Our results suggest that activation in Drosophila is triggered by a mechanosensitive process that allows external Ca2+ to enter the oocyte and drive the events of activation. This will allow exploitation of Drosophila genetics to dissect molecular pathways involving Ca2+ and the activation of development.  相似文献   

19.
Extracellular Ca2+ is required for capacitation and fertilization in the mouse, but very little is known about the ability of other divalent cations to substitute for Ca2+. In this study, Sr2+, Ba2+, and Mg2+ were evaluated for their ability to support capacitation, the acrosome reaction, hyperactivated motility, and fertilization. Ba2+ proved to be ineffective, but Mg2+-containing medium was able to support capacitation to a greater extent than unsupplemented Ca2+-deficient media; despite this, Ca2+ was required for fertilization. In contrast, Sr2+ proved capable of substituting for Ca2+ in all events. Furthermore, Sr2+-induced responses were indistinguishable from the corresponding Ca2+-induced ones: Sperm capacitated at the same rate and underwent the acrosome reaction to the same extent. However, demonstration of sperm:egg fusion in Sr2+ required the use of zona-free eggs. This was due not to the inability of the sperm to penetrate the zona but to the very rapid activation and cortical granule release by eggs in response to Sr2+. When zona-intact eggs were used, the block to polyspermy had been mounted by the time sperm had penetrated the zona. A 15 min exposure to Sr2+ was sufficient to block sperm fusion, but a longer exposure was required to ensure the resumption of meiosis in eggs; such a response was surprising in that the eggs were freshly ovulated and not susceptible to activation by many different treatments. Thus Sr2+ can profoundly affect both gametes in the mouse: It substitutes completely for Ca2+ in sperm responses and rapidly activates eggs, possibly by displacing Ca2+ from intracellular stores into the cytoplasm, where the Ca2+ can then trigger the various events of activation.  相似文献   

20.
The membrane potential of the frog egg undergoes a transient positive shift at fertilization which is a block to polyspermy. This paper addresses the question of how a sperm elicits this “fertilization potential.” Iontophoretic injection of Ca2+ activates Rana pipiens eggs to develop and initiates a transient, positive-going shift in the membrane potential (the activation potential) which is like the sperm-induced fertilization potential in amplitude, duration, and Cl? dependence. Activation potentials are elicited by Ca2 injection into both animal and vegetal regions of the egg, but the rate of the initial depolarization is much less when Ca2+ is injected into the vegetal region. Injections of K+, Na+, Cl?, or Mg2+ do not result in activation potentials, but the Ca2+ analogs, Sr2+ and Ba2+, can substitute for Ca2+. Treatment of eggs with the divalent cation ionophore, A23187, also initiates a transient, positive-going depolarization. Because injection of Ca2+ is sufficient to elicit a response almost identical to a fertilization potential, the ion transport mechanisms necessary to produce a fertilization potential must preexist in the unfertilized eggs; the sperm contributes only the stimulus to activate these mechanisms. The results reported here suggest that the stimulus may be a rise in free Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号