首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing enzyme, is an intracellular enzyme possessing various immunosuppressive properties. Here, we report the possible use of this enzyme to suppress proliferation of immune cells cocultured with IDO-expressing fibroblasts of an allogenic skin substitute. Fetal skin fibroblasts embedded within bovine collagen were treated with cytokine interferon-gamma (IFN-gamma) to induce expression of IDO mRNA and protein. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by measurement of kynurenine and tryptophan levels in the IFN-gamma untreated and treated fibroblasts. The results of Northern analysis showed a dose-dependent increase in expression of IDO mRNA in response to various concentrations of IFN-gamma used. The levels of kynurenine and tryptophan measured, as the bioactivity of IDO, were significantly different in the IFN-gamma treated fibroblasts, compared to those of controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA was gradually reduced to an undetectable level within 32 h of IFN-gamma removal. The results of Western blot analysis, however, revealed a significantly longer (192 h) lasting effect of IFN-gamma on IDO protein level, relative to that of mRNA expression. To demonstrate immunosuppressive effects of IDO on proliferation of immune cells, IDO-expressing fibroblasts were cocultured with peripheral blood mononuclear cells (PBMC) for a period of 5 days. The results of (3)H-thymidine incorporation showed a significant reduction in proliferation of PBMC when cocultured with IDO-expressing fibroblasts, compared to those cocultured with non-IDO-expressing fibroblasts (P < 0.001). Furthermore, addition of IDO-inhibitor (1-methyl-d-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation in a dose-dependant fashion. To test the viability of immune cells cocultured with IDO-expressing fibroblasts, FACS analysis of the PI stained PBMC was conducted and no significant difference was found between these cells and the controls. In another set of experiments, we showed that migration rate and subsequent proliferation of IDO-expressing fibroblasts are also the same as those of control cells. In conclusion, IDO-expressing allogenic fibroblasts embedded within collagen gel suppress the proliferation of allogenic immune cells, while they still remain viable in this IDO-induced tryptophan-deficient culture environment.  相似文献   

2.
Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohort of HIV-infected patients with different clinical outcomes: ART-naïve, Successfully Treated (ST), and elite controllers (EC). In ART-naïve patients, increased IDO activity/expression, together with elevated levels of TNF-α and sCD40L, were associated with Treg expansion and an altered Th17/Treg balance. These alterations were normalized under ART. In contrast, Trp 2,3-dioxegenase (TDO) expression was dramatically lower in EC when compared to all other groups. Interestingly, EC displayed a distinctive Trp metabolism characterized by low Trp plasma levels similar to ART-naïve patients without accumulating immunosuppressive Kyn levels which was accompanied by a preserved Th17/Treg balance. These results suggest a distinctive Trp catabolism and Th17/Treg balance in HIV progressors and EC. Thus, IDO-induced immune-metabolism may be considered as a new inflammation-related marker for HIV-1 disease progression.  相似文献   

3.
Background: Cervical cancer is a common malignant disease in female patients accompanied by activation of autophagy in tumor cells. However, the exact regulatory factors of autophagy and its effects on the immune response remain unknown.Methods: The induction of autophagy in HeLa and SiHa cells treated with IFN-γ, tryptophan depletion, kynurenine and epacadostat was detected by western blot analysis and by an autophagy detection kit. Following co-culture with pre-treated HeLa and SiHa cells, U937 cells were analyzed by flow cytometry to detect CD80, CD86, CD163 and CD206 expression and the induction of phagocytosis.Results: IFN-γ caused a significant increase in the autophagy levels of HeLa and SiHa cells by promoting indoleamine-2,3-dioxygenase-1 (IDO1) expression. The induction of phagocytosis in HeLa and SiHa cells and the expression levels of CD80 and CD86 in U937 cells were increased significantly following treatment with recombinant human IFN-γ. This effect was associated with the induction of tumor cell autophagy. IFN-γ treatment and IDO1 overexpression promoted tryptophan depletion and kynurenine accumulation in cervical cancer cells. The latter was more potent in inducing autophagy of cervical cancer cells and promoting phagocytosis of macrophages. In vivo, IDO1 overexpression restricted tumor growth in C57 mice and enhanced the induction of phagocytosis in macrophages.Conclusions: IFN-γ promoted induction of autophagy and macrophage phagocytosis in cervical cancer cells possibly via IDO1 expression and kynurenine metabolism.  相似文献   

4.
IDO is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO-expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. Because mammalian cells cannot synthesize tryptophan, it remains unclear how IDO(+) tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO(+) tumor cells express a novel amino acid transporter, which accounts for ~50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO(+) tumors relative to tryptophan uptake through the low-affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO-mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan-depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation.  相似文献   

5.
Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8+ T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8+ T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8+ T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.  相似文献   

6.
It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer''s patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood.  相似文献   

7.
The activity of indoleamine 2, 3-dioxygenase (IDO; E.C. 1.13.11.42) catalyzes the oxidative cleavage of tryptophan to form kynurenine. IDO activity consumes superoxide anions; therefore, we postulated that over-expression of IDO might mitigate superoxide-anion dependent, oxidative modification of cellular proteins in vitro. We prepared and characterized RAW 264.7 macrophages that were stably transfected with either an IDO expression vector or the control (empty) vector. We detected IDO mRNA, protein, and enzyme activity in the IDO-transfected macrophages, but not in the macrophages transfected with the empty vector. To generate superoxide anions in situ, we treated the IDO-and control-transfected cultures with xanthine or hypoxanthine, and then used ELISA methods to quantitate the relative levels of oxidatively modified proteins in total cell lysates. The levels of protein carbonyls were similar in IDO-transfected and vector-transfected macrophages; however, protein nitration was significantly less in IDO-transfected cells compared to control transfectants. In addition, steady-state levels of superoxide anions were significantly lower in the IDO-transfected cultures compared with control transfectants. Our results are consistent with the concept that, besides degrading tryptophan, IDO activity may protect cells from oxidative damage.  相似文献   

8.
IDO1, which encodes the immunosuppressive and tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-1 (IDO1), is a target for interferon-γ (IFN-γ). IDO1-mediated tryptophan catabolism in dendritic cells and macrophages arrests T cell proliferation, thereby providing a molecular basis for the immunosuppressive function of IDO1. Whether the entry of tryptophan into IDO1-expressing cells is also regulated by IFN-γ is not known. Here we used a human colonic epithelial cell line (CCD841) and a mouse dendritic cell line (DC2.4) to test the hypothesis that IFN-γ, which induces IDO1, also induces a tryptophan transporter to promote substrate availability to IDO1. Upon treatment with IFN-γ, there was a marked increase in IDO1 mRNA and a concomitant increase in tryptophan uptake in both cell lines. The induced uptake system was selective for tryptophan and saturable with a Michaelis constant of 36 ± 3 μM in CCD841 cells and 0.5 ± 0.1 μM in DC2.4 cells. The induction by IFN-γ and the tryptophan-selectivity of the induced transport system were demonstrable even in the presence of physiologic concentrations of all other amino acids. Since kynurenine, the catabolic end product of IDO1, is a signaling molecule as an agonist for the aryl hydrocarbon receptor (AhR), we examined if AhR signaling induces the tryptophan-selective transporter. Treatment of the cells with kynurenine and other AhR agonists increased tryptophan uptake. The present studies demonstrate that IFN-γ coordinately induces IDO1 and a tryptophan-selective transporter to maximize tryptophan depletion in IDO1-expressing cells and that the process involves a positive feedback mechanism via kynurenine-AhR signaling.  相似文献   

9.
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.  相似文献   

10.
Indoleamine 2,3-dioxygenase (IDO) is an intracellular tryptophan-catabolizing enzyme possessing various immunosuppressive properties. Here, we report the use of this enzyme to suppress the proliferation of peripheral blood mononuclear cells (PBMC) co-cultured with IDO-expressing fibroblasts of an allogeneic skin substitute in vitro. Fetal foreskin fibroblasts populated within collagen gel (FPCG) were treated with interferon-gamma (IFN-gamma) conjugated with a temperature-sensitive polymer to induce the expression of IDO mRNA and protein. SDS-PAGE showed successful conjugation of IFN-gamma with the temperature-sensitive polymer. Expression of IDO mRNA was evaluated by Northern analysis. IDO enzyme activity was evaluated by the measurement of kynurenine levels. The results of Northern blot analysis showed an induction of IDO mRNA expression when treated with polymer-conjugated IFN-gamma. Kynurenine levels, as a measure of IDO bioactivity, were significantly higher in IFN-gamma-treated fibroblasts than in controls (P < 0.001). In a lasting effect experiment, the expression of IDO mRNA in FPCG treated with polymer-conjugated IFN-gamma was significantly longer than in those treated with free (non-conjugated) IFN-gamma (P < 0.001). IFN-gamma radiolabeling showed a prolonged retention of IFN-gamma within collagen gel in its polymer-conjugated form, compared to its free form. Presence of IDO protein in FPCG was demonstrated by Western analysis even 16 days after removal of the conditioned medium (containing released IFN-gamma). To demonstrate the immunosuppressive effects of IDO on the proliferation of PBMC, IDO-expressing FPCG treated with polymer-conjugated IFN-gamma were co-cultured with PBMC for a period of 5 days. The results showed a significant reduction in proliferation of PBMC co-cultured with IFN-gamma-treated IDO-expressing fibroblasts, compared to those co-cultured with non-IDO-expressing fibroblasts (P < 0.001). The addition of an IDO inhibitor (1-methyl-D-tryptophan) reversed the suppressive effects of IDO on PBMC proliferation. In conclusion, IDO expression in FPCG suppresses the proliferation of immune cells in vitro. The use of a temperature-sensitive polymer further prolongs the effect of IFN-gamma on the expression of IDO. Therefore, modulating IDO levels in situ might be an alternative for prolonging the survival of skin allografts.  相似文献   

11.
BackgroundMultidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells.ResultsWe found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells.ConclusionsOur work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.  相似文献   

12.
Success of transplantation of pancreatic islets which is a promising way for restoring efficient insulin regulation in type 1 diabetes depends on lifelong use of immunosuppressive drugs. To eliminate the use of systemic immunosuppressive drugs for islet transplantation, we examined the potential use of a local immunosuppressive factor, indoleamine 2,3-dioxygenase (IDO). Thus, the aim of this study was to determine whether local expression of IDO in bystander syngeneic fibroblasts could prevent islet allogeneic immune response in vitro. C57BL/6 (B6) mouse fibroblasts were induced to express IDO by either IFN-gamma treatment or transduction with an adenoviral vector and were co-cultured with B6 mouse lymphocytes and BALB/c mouse pancreatic islets in the presence or absence of an IDO inhibitor. Proliferation of lymphocytes were then assessed using [(3)H]-thymidine incorporation assay. IDO-expression by co-cultured syngeneic fibroblasts resulted in a five-fold decrease in lymphocyte proliferation rate upon stimulation of lymphocytes by allogeneic mouse pancreatic islets (21.9% +/- 5.3 and 22.1% +/- 4.9 in the preparations with IFN-gamma treated and genetically modified IDO-expressing fibroblasts, respectively vs. 100% in control groups, P < 0.01). Allogeneic response was restored when IDO inhibitor was added to the culture indicating that suppression was due to IDO. In conclusion, this study shows that local expression of IDO by syngeneic bystander fibroblasts can suppress in vitro proliferation of lymphocytes in response to stimulation with allogeneic pancreatic islets. This local immunosuppressive function of IDO may be employed for development of a novel alternative strategy for preventing allogeneic islet graft rejection.  相似文献   

13.
The kynurenine pathway is the major tryptophan degradation routes generating bioactive compounds important in physiology and diseases. Depending on cell type it is initiated enzymatically by tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2) to yield N-formylkynurenine as the precursor of further metabolites. Herein, we describe an accurate high-pressure liquid chromatography coupled with a diode array detector (HPLC-DAD) method to serve for IDO1 activity determination in human cancer cells cultured in vitro. Enzymatic activity was expressed as the rate of ʟ-kynurenine generation by 1 mg of proteins obtained from cancer cells. Our approach shows the limit of detection and limit of quantification at 12.9 and 43.0 nM Kyn, respectively. Applicability of this method was demonstrated in different cells (ovarian and breast cancer)exposed to various conditions and has successfully passed the validation process. This approach presents a useful model to study the role of kynurenine pathway in cancer biology.  相似文献   

14.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

15.
Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.  相似文献   

16.
17.
Indoleamine 2,3-dioxygenase (IDO) is induced by proinflammatory cytokines and by CTLA-4-expressing T cells and constitutes an important mediator of peripheral immune tolerance. In chronic hepatitis C, we found upregulation of IDO expression in the liver and an increased serum kynurenine/tryptophan ratio (a reflection of IDO activity). Huh7 cells supporting hepatitis C virus (HCV) replication expressed higher levels of IDO mRNA than noninfected cells when stimulated with gamma interferon or when cocultured with activated T cells. In infected chimpanzees, hepatic IDO expression decreased in animals that cured the infection, while it remained high in those that progressed to chronicity. For both patients and chimpanzees, hepatic expression of IDO and CTLA-4 correlated directly. Induction of IDO may dampen T-cell reactivity to viral antigens in chronic HCV infection.  相似文献   

18.
The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is an important regulator of immune cell activity within the immunosuppressive ocular microenvironment. Its constitutive presence not only suppresses macrophage inflammatory activity, it also participates in retinal pigment epithelial cell (RPE) mediated activation of macrophages to function similar to myeloid suppressor cells. In addition, α-MSH promotes survival of the alternatively activated macrophages where without α-MSH RPE induce apoptosis in the macrophages, which is seen as increased TUNEL stained cells. Since there is little know about α-MSH as an anti-apoptotic factor, the effects of α-MSH on caspase activity, mitochondrial membrane potential, Bcl2 to BAX expression, along with TUNEL staining, and Annexin V binding were examined in RAW 264.7 macrophages under serum-starved conditions that trigger apoptosis. There was no effect of α-MSH on activated Caspase 9 and Caspase 3 while there was suppression of Caspase 8 activity. In addition, α-MSH did not improve mitochondrial membrane potential, change the ratio between Bcl-2 and BAX, nor reduce Annexin V binding. These results demonstrate that the diminution in TUNEL staining by α-MSH is through α-MSH mediating suppression of the apoptotic pathway that is post-Caspase 3, but before DNA fragmentation. Therefore, as α-MSH promotes the alternative activation of macrophages it also provides a survival signal, and the potential for the caspases to participate in non-apoptotic activities that can contribute to an immunosuppressive microenvironment.  相似文献   

19.
20.
Human obesity is characterized by chronic low-grade inflammation in white adipose tissue and is often associated with hypertension. The potential induction of indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme in tryptophan/kynurenine degradation pathway, by proinflammatory cytokines, could be associated with these disorders but has remained unexplored in obesity. Using immunohistochemistry, we detected IDO1 expression in white adipose tissue of obese patients, and we focused on its contribution in the regulation of vascular tone and on its immunoregulatory effects. Concentrations of tryptophan and kynurenine were measured in sera of 36 obese and 15 lean women. The expression of IDO1 in corresponding omental and subcutaneous adipose tissues and liver was evaluated. Proinflammatory markers and T-cell subsets were analyzed in adipose tissue via the expression of CD14, IL-18, CD68, TNFα, CD3ε, FOXP3 [a regulatory T-cell (Treg) marker] and RORC (a Th17 marker). In obese subjects, the ratio of kynurenine to tryptophan, which reflects IDO1 activation, is higher than in lean subjects. Furthermore, IDO1 expression in both adipose tissues and liver is increased and is inversely correlated with arterial blood pressure. Inflammation is associated with a T-cell infiltration in obese adipose tissue, with predominance of Th17 in the omental compartment and of Treg in the subcutaneous depot. The Th17/Treg balance is decreased in subcutaneous fat and correlates with IDO1 activation. In contrast, in the omental compartment, despite IDO1 activation, the Th17/Treg balance control is impaired. Taken together, our results suggest that IDO1 activation represents a local compensatory mechanism to limit obesity-induced inflammation and hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号