首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tobacco bushy top disease is caused by a complex of the viruses tobacco bushy top virus (TBTV, a member of the genus Umbravirus) and tobacco vein distorting virus (TVDV, a member of the genus Polerovirus), which acts as a helper virus encapsidating the TBTV genomic RNA. RNA from purified virions is separated as five bands. The two largest (6.0 and 4.2 kb) were shown by Northern blot analysis to be the genomic RNAs of TVDV and TBTV, respectively. A band of about 3 kb was cloned and sequenced and shown to be the RNA of a previously undescribed virus with two open reading frames (ORFs), the second of which is an RNA‐dependent RNA polymerase (RdRp) and is probably expressed by readthrough of the ORF1a stop codon. BLAST and phylogenetic analyses of the RdRp show that it is related to two RNAs previously reported in association with the poleroviruses Beet western yellows virus and Carrot red leaf virus. These three RNAs appear to represent species of a new genus of plant viruses dependent upon a helper polerovirus for their transmission.  相似文献   

2.
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37°C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaΦ23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.  相似文献   

3.
Taxonomy: Cotton leafroll dwarf virus (CLRDV) is a member of the genus Polerovirus, family Solemoviridae. Geographical Distribution: CLRDV is present in most cotton-producing regions worldwide, prominently in North and South America. Physical Properties : The virion is a nonenveloped icosahedron with T = 3 icosahedral lattice symmetry that has a diameter of 26–34 nm and comprises 180 molecules of the capsid protein. The CsCl buoyant density of the virion is 1.39–1.42 g/cm3 and S20w is 115–127S. Genome: CLRDV shares genomic features with other poleroviruses; its genome consists of monopartite, single-stranded, positive-sense RNA, is approximately 5.7–5.8 kb in length, and is composed of seven open reading frames (ORFs) with an intergenic region between ORF2 and ORF3a. Transmission: CLRDV is transmitted efficiently by the cotton aphid (Aphis gossypii Glover) in a circulative and nonpropagative manner. Host: CLRDV has a limited host range. Cotton is the primary host, and it has also been detected in different weeds in and around commercial cotton fields in Georgia, USA. Symptoms: Cotton plants infected early in the growth stage exhibit reddening or bronzing of foliage, maroon stems and petioles, and drooping. Plants infected in later growth stages exhibit intense green foliage with leaf rugosity, moderate to severe stunting, shortened internodes, and increased boll shedding/abortion, resulting in poor boll retention. These symptoms are variable and are probably influenced by the time of infection, plant growth stage, varieties, soil health, and geographical location. CLRDV is also often detected in symptomless plants. Control: Vector management with the application of chemical insecticides is ineffective. Some host plant varieties grown in South America are resistant, but all varieties grown in the United States are susceptible. Integrated disease management strategies, including weed management and removal of volunteer stalks, could reduce the abundance of virus inoculum in the field.  相似文献   

4.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

5.
Boulila M 《Biochimie》2011,93(2):242-253
In an effort to enhance the knowledge on molecular evolution of currently the known members of the families Luteoviridae and Tymoviridae, in-depth molecular investigations in the entire genome of 147 accessions retrieved from the international databases, were carried out. Two algorithms (RECCO and RDP version 3.31β) adapted to the mosaic structure of viruses were utilized. The recombination frequency along the sequences was dissected and demonstrated that the three virus genera of the family Luteoviridae comprise numerous members subjected to recombination. It has pointed out that the major viruses swapped a few but long genomic segments. In addition, in Barley yellow dwarf virus, heredity material might be exchanged between two different serotypes. Even more, putative recombination events occurred between two different genera. Based on Fisher’s Exact Test of Neutrality, positive selection acting on protein expression was detected only in the poleroviruses Cereal yellow dwarf virus, Potato leafroll virus and Wheat yellow dwarf virus. In contrast, several components of the family Tymoviridae were highly recombinant. Genomic portion exchange arose in many positions consisting of short fragments. Furthermore, no positive selection was detected. The evolutionary history showed, in the Luteoviridae, that all screened isolates split into three clusters corresponding to the three virus genera forming this family. Moreover, in the serotype PAV of Barley yellow dwarf virus, two major clades corresponding to PAV-USA and PAV-China, were delineated. Similarly, in the Tymoviridae, all analyzed isolates fell into four groups corresponding to the three virus genera composing this family along with the unclassified Tymoviridae. Inferred phylogenies reshuffled the existing classification and showed that Wheat yellow dwarf virus-RPV was genetically closely related to Cereal yellow dwarf virus and the unclassified Tymoviridae Grapevine syrah virus-1 constituted an integral part of the genus Marafivirus.  相似文献   

6.
Virus isolate G35 was obtained from Euphorbia pulcherrima showing leaf curl and vein thickening symptoms in Tianyang, Guangxi Province, China. The virus was transmitted by whiteflies to Nicotiana tabacum, Lycopersicon esculentum, Datura stramonium and E. pulcherrima. DNA‐A contains 2746 nucleotides, with two open reading frames (ORFs) in the virion‐sense DNA and four ORFs in the complementary‐sense DNA. When compared with the DNA‐A sequence of other begomoviruses, the total DNA‐A of isolate G35 was most closely related to that of Ageratum enation virus (79.9% sequence identity). However, the deduced coat protein of G35 is most like that of Pepper leaf curl virus from Bangladesh (94.9% amino acid sequence identity), and the AC1 of G35 is most like that of Cotton leaf curl Multan virus‐Okra (87.2% amino acid sequence identity). The molecular data showed that G35 is a distinct Begomovirus species, for which the name Euphorbia leaf curl virus (ELCV) is proposed.  相似文献   

7.
8.
Members of the genus Tobamovirus represent one of the best-characterized groups of plant positive, single stranded RNA viruses. Previous studies have shown that genomes of some tobamoviruses contain not only genes coding for coat protein, movement protein, and the cistron coding for different domains of RNA-polymerase, but also a gene, named ORF6, coding for a poorly conserved small protein. The amino acid sequences of ORF6 proteins encoded by different tobamoviruses are highly divergent. The potential role of ORF6 proteins in replication of tobamoviruses still needs to be elucidated. In this study, using biochemical and immunological methods, we have shown that ORF6 peptide is accumulated after infection in case of two isolates of Tobacco mosaic virus strain U1 (TMV-U1 common and TMV-U1 isolate A15). Unlike virus particles accumulating in the cytoplasm, the product of the ORF6 gene is found mainly in nuclei, which correlates with previously published data about transient expression of ORF6 isolated from TMV-U1. Moreover, we present new data showing the presence of ORF6 genes in genomes of several tobamoviruses. For example, in the genomes of other members of the tobamovirus subgroup 1, including Rehmannia mosaic virus, Paprika mild mottle virus, Tobacco mild green mosaic virus, Tomato mosaic virus, Tomato mottle mosaic virus, and Nigerian tobacco latent virus, sequence comparisons revealed the existence of a similar open reading frame like ORF6 of TMV.  相似文献   

9.
Cauliflower mosaic virus (CaMV) is a plant pararetrovirus with a double-stranded DNA genome. It is the type member of the genus Caulimovirus in the family Caulimoviridae. CaMV is transmitted by sap inoculation and in nature by aphids in a semi-persistent manner. To investigate the patterns and timescale of CaMV migration and evolution, we sequenced and analyzed the genomes of 67 isolates of CaMV collected mostly in Greece, Iran, Turkey, and Japan together with nine published sequences. We identified the open-reading frames (ORFs) in the genomes and inferred their phylogeny. After removing recombinant sequences, we estimated the substitution rates, divergence times, and phylogeographic patterns of the virus populations. We found that recombination has been a common feature of CaMV evolution, and that ORFs I–V have a different evolutionary history from ORF VI. The ORFs have evolved at rates between 1.71 and 5.81×10−4 substitutions/site/year, similar to those of viruses with RNA or ssDNA genomes. We found four geographically confined lineages. CaMV probably spread from a single population to other parts of the world around 400–500 years ago, and is now widely distributed among Eurasian countries. Our results revealed evidence of frequent gene flow between populations in Turkey and those of its neighboring countries, with similar patterns observed for Japan and the USA. Our study represents the first report on the spatial and temporal spread of a plant pararetrovirus.  相似文献   

10.
11.
A bizarre virus‐like symptom of a leaf rosette formed by dense small leaves on branches of wild roses (Rosa multiflora Thunb.), designated as ‘wild rose leaf rosette disease’ (WRLRD), was observed in China. To investigate the presumed causal virus, a wild rose sample affected by WRLRD was subjected to deep sequencing of small interfering RNAs (siRNAs) for a complete survey of the infecting viruses and viroids. The assembly of siRNAs led to the reconstruction of the complete genomes of three known viruses, namely Apple stem grooving virus (ASGV), Blackberry chlorotic ringspot virus (BCRV) and Prunus necrotic ringspot virus (PNRSV), and of a novel virus provisionally named ‘rose leaf rosette‐associated virus’ (RLRaV). Phylogenetic analysis clearly placed RLRaV alongside members of the genus Closterovirus, family Closteroviridae. Genome organization of RLRaV RNA (17 653 nucleotides) showed 13 open reading frames (ORFs), except ORF1 and the quintuple gene block, most of which showed no significant similarities with known viral proteins, but, instead, had detectable identities to fungal or bacterial proteins. Additional novel molecular features indicated that RLRaV seems to be the most complex virus among the known genus members. To our knowledge, this is the first report of WRLRD and its associated closterovirus, as well as two ilarviruses and one capilovirus, infecting wild roses. Our findings present novel information about the closterovirus and the aetiology of this rose disease which should facilitate its control. More importantly, the novel features of RLRaV help to clarify the molecular and evolutionary features of the closterovirus.  相似文献   

12.
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and ∼95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.  相似文献   

13.
烟草脉扭病毒(Tobacco vein distorting virus,TVDV)是引起烟草丛顶病的两种病毒之一。TVDV被归为黄症病毒科的暂定成员。应用黄症病毒科的通用引物和根据马铃薯卷叶病毒属成员核酸序列设计的简并引物,通过RT-PCR从烟草丛顶病烟株总RNA中扩增到了TVDV基因的部分序列。序列分析获得了长度为1654bp的序列,编码推测的TVDV复制酶基因的部分序列,外壳蛋白基因及运动蛋白基因的全部序列。根据这三个基因编码的氨基酸序列构建的分子进化树分析表明,TVDV为黄症病毒科的确定成员。根据其基因间隔区的长度特征和各ORF编码的氨基酸的分子进化分析,我们推测TVDV应当是马铃薯卷叶病毒属的一个新成员。这是TVDV的分子生物学特征的首次报道。  相似文献   

14.
15.
Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV movement.  相似文献   

16.
17.
Viral diseases that could cause important economic losses often affect cucurbits, but only limited information on the incidence and spatial distribution of specific viruses is currently available. During the 2005 and 2006 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo), squash and pumpkin (Cucurbita pepo), watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) crops of the Spanish Community of Valencia (eastern Spain), where several counties have a long standing tradition of cucurbit cultivation and production. Surveyed fields were chosen with no previous information as to their sanitation status, and samples were taken from plants that showed virus‐like symptoms. Samples were analysed using molecular hybridisation to detect Beet pseudo‐yellows virus (BPYV), Cucurbit aphid‐borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ring spot virus (PRSV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). We collected 1767 samples from 122 independent field plots; out of these, approximately 94% of the samples were infected by at least one of these viruses. Percentages for the more frequently detected viruses were 35.8%, 27.0%, 16.5% and 7.2% for CABYV, WMV, PRSV and ZYMV, respectively, and significant deviations were found on the frequency distributions based on either the area or the host sampled. The number of multiple infections was high (average 36%), particularly for squash (more than 57%), with the most frequent combination being WMV + PRSV (12%) followed by WMV + CABYV (10%). Sequencing of WMV complementary DNA suggested that ‘emerging’ isolates have replaced the ‘classic’ ones, as described in southern regions of France, leading us to believe that cucurbit cultivation could be severely affected by these new, emerging isolates.  相似文献   

18.
The mtDNA rnl-U7 region has been examined for the presence of introns in selected species of the genus Ceratocystis. Comparative sequence analysis identified group I and group II introns encoding single and double motif LAGLIDADG open reading frames (ORFs) at the following positions L1671, L1787, and L1923. In addition downstream of the rnl-U7 region group I introns were detected at positions L1971 and L2231, and a group II intron at L2059. A GIY-YIG type ORF was located within one mL1923 LAGLIDADG type ORF and a degenerated GIY-YIG ORF fused to a nad2 gene fragment was found in association with the mL1971 group I intron. The diversity of composite elements that appear to be sporadically distributed among closely related species of Ceratocystis illustrates the potential for homing endonucleases and their associated introns to invade new sites. Phylogenetic analysis showed that single motif LADGLIDADG ORFs related to the mL1923 ORFs have invaded the L1787 group II intron and the L1671 group I intron. Phylogenetic analysis of intron encoded single and double motif LAGLIDADG ORFs also showed that these ORFs transferred four times from group I into group II B1 type introns.  相似文献   

19.
20.
Southern rice black‐streaked dwarf virus (SRBSDV) is a novel putative member of the genus Fijivirus, family Reoviridae. We report here the genomic sequences of a Vietnamese isolate (SRBSDV‐V). The total genome of SRBSDV‐V has 29 115 nucleotides (nt), nine nt shorter than SRBSDV‐GD or ‐HN, but similar in organization to these two Chinese isolates. Nucleotide diversities among SRBSDV isolates were much lower than those among the corresponding ORFs of the available RBSDV isolates and there was a lower purifying selection pressure on SRBSDV than RBSDV, providing first molecular evidence for the view that SRBSDV is of recent origin. In studies of all available SRBSDV sequences, there was no obvious correlation between geographic distances and phylogenetic distribution. A high frequency of genetic recombination was found among both Chinese and Vietnam SRBSDV isolates, suggesting that recombination may play an important role in the molecular variation and evolution of SRBSDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号