首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.  相似文献   

2.
The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.  相似文献   

3.
Aims: To determine the relationship between yellow band disease (YBD)-associated pathogenic bacteria found in both Caribbean and Indo-Pacific reefs, and the virulence of these pathogens. YBD is one of the most significant coral diseases of the tropics. Materials and Results: The consortium of four Vibrio species was isolated from YBD tissue on Indo-Pacific corals: Vibrio rotiferianus, Vibrio harveyi, Vibrio alginolyticus and Vibrio proteolyticus. This consortium affects Symbiodinium (zooxanthellae) in hospite causing symbiotic algal cell dysfunction and disorganization of algal thylakoid membrane-bound compartment from corals in both field and laboratory. Infected corals have decreased zooxanthella cell division compared with the healthy corals. Vibrios isolated from diseased Diploastrea heliopora, Fungia spp. and Herpolitha spp. of reef-building corals display pale yellow lesions, which are similar to those found on Caribbean Montastraea spp. with YBD. Conclusions: The Vibrio consortium found in YBD-infected corals in the Caribbean are close genetic relatives to those in the Indo-Pacific. The consortium directly attacks Symbiodinium spp. (zooxanthellae) within gastrodermal tissues, causing degenerated and deformed organelles, and depleted photosynthetic pigments in vitro and in situ. Infected Fungia spp. have decreased cell division compared with the healthy zooxanthellae: 4·9%vs 1·9%, (P ≥ 0·0024), and in D. heliopora from 4·7% to 0·7% (P ≥ 0·002). Significance and Impact of the Study: Pathogen virulence has major impacts on the survival of these important reef-building corals around the tropics.  相似文献   

4.
The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.  相似文献   

5.
Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.  相似文献   

6.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

7.
Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes''s territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans''s territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease.  相似文献   

8.
Restoration of degraded coral reef communities is dependent on successful recruitment and survival of new coral planulae. Degraded reefs are often characterized by high cover of fleshy algae and high microbial densities, complemented by low abundance of coral and coral recruits. Here, we investigated how the presence and abundance of macroalgae and microbes affected recruitment success of a common Hawaiian coral. We found that the presence of algae reduced survivorship and settlement success of planulae. With the addition of the broad-spectrum antibiotic, ampicillin, these negative effects were reversed, suggesting that algae indirectly cause planular mortality by enhancing microbial concentrations or by weakening the coral’s resistance to microbial infections. Algae further reduced recruitment success of corals as planulae preferentially settled on algal surfaces, but later suffered 100% mortality. In contrast to survival, settlement was unsuccessful in treatments containing antibiotics, suggesting that benthic microbes may be necessary to induce settlement. These experiments highlight potential complex interactions that govern the relationships between microbes, algae and corals and emphasize the importance of microbial dynamics in coral reef ecology and restoration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Previous studies in fringing reefs of the Northern Red Sea demonstrated that the in-situ competition of corals and algae in natural assemblages is highly variable between seasons displaying fast overgrowth of corals by benthic reef algae in fall that follows close to equilibrium between both groups of organisms in summer. This may be caused by up to 5-fold higher inorganic nutrient and 6-fold higher organic nutrient concentrations in fall and winter, thereby potentially promoting algae and cyanobacteria growth with concomitant phase shift. A long term mesocosm experiment (duration: 90 days) was conducted in order to study the effect of dissolved inorganic (ammonium, phosphate, nitrate, and mix of all three) and organic (glucose) nutrient addition onto the competitive process in the dominant coral–algae assemblages of the Northern Red Sea involving branching corals of the genus Acropora and a typical consortium of benthic turf algae. Nutrients were added in 3-fold higher concentrations compared to the annual averages, and the parameters algal growth, extension of bleached area on corals, tissue colour change and chlorophyll a concentrations were monitored at regular intervals over experimental duration. This revealed that elevated ammonium concentrations and elevated organic nutrient concentrations stimulate algal growth, while coral tissue pigmentation and chlorophyll a content were significantly decreased. But only in the elevated organic nutrient treatment all effects on corals were significantly pronounced when assembled with benthic turf algae. Supplementary logger measurements revealed that O2 water concentrations were significantly lower in the elevated organic nutrient mesocosm compared to all other treatments, confirming side-effects on microbial activity. These findings indicate that organic nutrient input into coral reefs can affect physiology and metabolism of both corals and benthic turf algae. Reinforcing interaction between both groups of organisms along with involvement of microbes may facilitate phase shifts in coral reef ecosystems.  相似文献   

10.
Competition between benthic algae and corals is a key process in the community ecology of reefs, especially during reef degradation. However, there have been very few experimental tests for competition between corals and benthic algae, despite widespread assumptions that algae are generally superior competitors, especially in eutrophic conditions. This study tested for competition for space between the massive coral Porites lobata and algal filamentous turfs on three reefs along a cross-shelf gradient of terrestrial influence, by experimentally removing or damaging either corals or algae. The corals and algae were competing for space, but, significantly, the algae appeared to have little effect on coral growth. In contrast, corals significantly inhibited algal growth, suggesting Porites was the competitive superior. Importantly, coral growth was generally positive, even on the reef with the greatest terrestrial influence. Competitive outcomes did not support the argument that algae are more successful competitors in more eutrophic conditions.  相似文献   

11.
Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication) on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We found that turf algae cause visible (overgrowth) and invisible negative effects (reduced fitness) on neighbouring corals. Corals can overgrow neighbouring turf algae very slowly (at a rate of 0.12 mm 3 wk−1) at ambient nutrient concentrations, but turf algae overgrew corals (at a rate of 0.34 mm 3 wk−1) when nutrients were experimentally increased. Exclusion of herbivores had no measurable effect on the rate turf algae overgrew corals. We also used PAM fluorometry (a common approach for measuring of a colony''s “fitness”) to detect the effects of turf algae on the photophysiology of neighboring corals. Turf algae always reduced the effective photochemical efficiency of neighbouring corals, regardless of nutrient and/or herbivore conditions. The findings that herbivores are not capable of controlling the abundance of turf algae and that nutrient enrichment gives turf algae an overall competitive advantage over corals together have serious implications for the health of Caribbean coral reef systems. At ambient nutrient levels, traditional conservation measures aimed at reversing coral-to-algae phase shifts by reducing algal abundance (i.e., increasing herbivore populations by establishing Marine Protected Areas or tightening fishing regulations) will not necessarily reduce the negative impact of turf algae on local coral communities. Because turf algae have become the most abundant benthic group on Curaçao (and likely elsewhere in the Caribbean), new conservation strategies are required to mitigate their negative impact on coral communities.  相似文献   

12.
For 30 years it has been assumed that a single species of cyanobacteria, Phormidium corallyticum, is the volumetrically dominant component of all cases of black band disease (BBD) in coral. Cyanobacterium-specific 16S rRNA gene primers and terminal restriction fragment length polymorphism analyses were used to determine the phylogenetic diversity of these BBD cyanobacteria on coral reefs in the Caribbean and Indo-Pacific Seas. These analyses indicate that the cyanobacteria that inhabit BBD bacterial mats collected from the Caribbean and Indo-Pacific Seas belong to at least three different taxa, despite the fact that the corals in each case exhibit similar signs and patterns of BBD mat development.  相似文献   

13.
Space limitation leads to competition between benthic, sessile organisms on coral reefs. As a primary example, reef-building corals are in direct contact with each other and many different species and functional groups of algae. Here we characterize interactions between three coral genera and three algal functional groups using a combination of hyperspectral imaging and oxygen microprofiling. We also performed in situ interaction transects to quantify the relative occurrence of these interaction on coral reefs. These studies were conducted in the Southern Line Islands, home to some of the most remote and near-pristine reefs in the world. Our goal was to determine if different types of coral-coral and coral-algal interactions were characterized by unique fine-scale physiological signatures. This is the first report using hyperspectral imaging for characterization of marine benthic organisms at the micron scale and proved to be a valuable tool for discriminating among different photosynthetic organisms. Consistent patterns emerged in physiology across different types of competitive interactions. In cases where corals were in direct contact with turf or macroalgae, there was a zone of hypoxia and altered pigmentation on the coral. In contrast, interaction zones between corals and crustose coralline algae (CCA) were not hypoxic and the coral tissue was consistent across the colony. Our results suggest that at least two main characteristic coral interaction phenotypes exist: 1) hypoxia and coral tissue disruption, seen with interactions between corals and fleshy turf and/or some species of macroalgae, and 2) no hypoxia or tissue disruption, seen with interactions between corals and some species of CCA. Hyperspectral imaging in combination with oxygen profiling provided useful information on competitive interactions between benthic reef organisms, and demonstrated that some turf and fleshy macroalgae can be a constant source of stress for corals, while CCA are not.  相似文献   

14.
Viral communities associated with healthy and bleaching corals   总被引:1,自引:0,他引:1  
The coral holobiont is the integrated assemblage of the coral animal, its symbiotic algae, protists, fungi and a diverse consortium of Bacteria and Archaea . Corals are a model system for the study of symbiosis, the breakdown of which can result in disease and mortality. Little is known, however, about viruses that infect corals and their symbionts. Here we present metagenomic analyses of the viral communities associated with healthy and partially bleached specimens of the Caribbean reef-building coral Diploria strigosa . Surprisingly, herpes-like sequences accounted for 4–8% of the total sequences in each metagenome; this abundance of herpes-like sequences is unprecedented in other marine viral metagenomes. Viruses similar to those that infect algae and plants were also present in the coral viral assemblage. Among the phage identified, cyanophages were abundant in both healthy and bleaching corals and vibriophages were also present. Therefore, coral-associated viruses could potentially infect all components of the holobiont – coral, algal and microbial. Thus, we expect viruses to figure prominently in the preservation and breakdown of coral health.  相似文献   

15.
For 30 years it has been assumed that a single species of cyanobacteria, Phormidium corallyticum, is the volumetrically dominant component of all cases of black band disease (BBD) in coral. Cyanobacterium-specific 16S rRNA gene primers and terminal restriction fragment length polymorphism analyses were used to determine the phylogenetic diversity of these BBD cyanobacteria on coral reefs in the Caribbean and Indo-Pacific Seas. These analyses indicate that the cyanobacteria that inhabit BBD bacterial mats collected from the Caribbean and Indo-Pacific Seas belong to at least three different taxa, despite the fact that the corals in each case exhibit similar signs and patterns of BBD mat development.  相似文献   

16.
17.
Despite widespread acceptance that competition between scleractinian corals and benthic algae is important to the structure of coral reef communities, there is little direct experimental evidence that corals and algae do compete, and very little data on the processes and causality of their interactions. Most available evidence is observational or correlative, with intrinsic risks of confounded causality. This paper reviews and categorises the available evidence, concluding that competition between corals and algae probably is widespread on coral reefs, but also that the interaction varies considerably. Widespread replacement of corals by algae may often indicate coral mortality due to external disturbances, rather than competitive overgrowth, but may lead to competitive inhibition of coral recruitment, with consequences for reef recovery. We list eight specific processes by which corals and algae may affect each other, and suggest life history properties that will influence which of these interactions are possible. We propose a matrix for algal effects on corals, which lists the subset of processes possible for each combination of coral life form and algal functional group. This table provides a preliminary framework for improved understanding and interpretation of coral-algal interactions.  相似文献   

18.
This is the first report of a putative pathogenic ciliate protozoan that has been associated with Caribbean corals. Previously, only 2 species of the phylum Ciliophora had been linked to coral diseases, and they were exclusive to the Indo-Pacific region. In this study, a ciliate of the genus Halofolliculina was found on 10 hard coral species at the National Parks of Los Roques and Morrocoy, Venezuela. The general morphology of this ciliate is very similar to that of Halofolliculina corallasia from the Indo-Pacific, which is known to cause skeletal eroding band. None of the other 31 genera in the family Folliculinidae are known to cause diseases in corals or in any other animal species. The presence of this ciliate, which shows a prevalence comparable to that of other epizootics in the Caribbean, suggests it could be a new threat to the coral reefs of this region.  相似文献   

19.
Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.  相似文献   

20.
White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号