首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Infection with Leishmania results in a broad spectrum of pathologies where L. infantum and L. donovani cause fatal visceral leishmaniasis and L. major causes destructive cutaneous lesions. The identification and characterization of Leishmania virulence genes may define the genetic basis for these different pathologies.

Methods and Findings

Comparison of the recently completed L. major and L. infantum genomes revealed a relatively small number of genes that are absent or present as pseudogenes in L. major and potentially encode proteins in L. infantum. To investigate the potential role of genetic differences between species in visceral infection, seven genes initially classified as absent in L. major but present in L. infantum were cloned from the closely related L. donovani genome and introduced into L. major. The transgenic L. major expressing the L. donovani genes were then introduced into BALB/c mice to select for parasites with increased virulence in the spleen to determine whether any of the L. donovani genes increased visceral infection levels. During the course of these experiments, one of the selected genes (LinJ32_V3.1040 (Li1040)) was reclassified as also present in the L. major genome. Interestingly, only the Li1040 gene significantly increased visceral infection in the L. major transfectants. The Li1040 gene encodes a protein containing a putative component of an endosomal protein sorting complex involved with protein transport.

Conclusions

These observations demonstrate that the levels of expression and sequence variations in genes ubiquitously shared between Leishmania species have the potential to significantly influence virulence and tissue tropism.  相似文献   

2.

Background

Three major forms of human disease, cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis, are caused by several leishmanial species whose geographic distribution frequently overlaps. These Leishmania species have diverse reservoir hosts, sand fly vectors and transmission patterns. In the Old World, the main parasite species responsible for leishmaniasis are Leishmania infantum, L. donovani, L. tropica, L. aethiopica and L. major. Accurate, rapid and sensitive diagnostic and identification procedures are crucial for the detection of infection and characterization of the causative leishmanial species, in order to provide accurate treatment, precise prognosis and appropriate public health control measures.

Methods/Principal Findings

High resolution melt analysis of a real time PCR product from the Internal Transcribed Spacer-1 rRNA region was used to identify and quantify Old World Leishmania in 300 samples from human patients, reservoir hosts and sand flies. Different characteristic high resolution melt analysis patterns were exhibited by L. major, L. tropica, L. aethiopica, and L. infantum. Genotyping by high resolution melt analysis was verified by DNA sequencing or restriction fragment length polymorphism. This new assay was able to detect as little as 2-4 ITS1 gene copies in a 5 µl DNA sample, i.e., less than a single parasite per reaction.

Conclusions/Significance

This new technique is useful for rapid diagnosis of leishmaniasis and simultaneous identification and quantification of the infecting Leishmania species. It can be used for diagnostic purposes directly from clinical samples, as well as epidemiological studies, reservoir host investigations and vector surveys.  相似文献   

3.

Background

One of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period.

Methodology

Blood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve.

Findings

The presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10).

Conclusions

Serological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias in population studies. Therefore, studies which have used serological assays to estimate prevalence, to evaluate intervention programs or to identify risk factors for Leishmania infection, may have had their results compromised.  相似文献   

4.

Background:

Leishmaniasis, especially cutaneous leishmaniasis, is considered an important health problem in many parts of Iran including Kharve, Khorasan Razavi province. Cutaneous leishmaniasis is caused by various species of Leishmania, each having a different secondary host. Thus, identifying the parasites’ specie is of paramount importance for containment strategy planning. The morphological differentiation of Leishmania species is not possible, rendering the molecular methods as the sole means to this purpose. Therefore, to identify the causative agent of cutaneous leishmaniasis in Kharve, Random Amplified Polymorphic DNA-PCR (RAPD-PCR) was used.

Methods:

The disease was first confirmed by direct smears. Samples were gathered from 22 patients with established cutaneous leishmaniasis. The samples were immediately cultured in NNN medium, followed by sub-culture in RPMI-1640. Afterwards, DNA was extracted and amplified using RAPD-PCR. Electrophoresis patterns from each isolate were compared with reference strains of Leishmania major (L. major) and Leishmania tropica (L. tropica).

Results:

The results of this study indicated that the parasite causing cutaneous leishmaniasis in Kharve is L. tropica.

Conclusion:

It seems that L. tropica is the only causative agent of cutaneous leishmaniasis in Kharve, and RAPD-PCR is a suitable tool for Leishmania characterization in epidemiological studies.Key Words: Leishmania major, Leishmania tropica, RAPD-PCR, Khorasan, Kharve  相似文献   

5.

Background

Visceral leishmaniasis is the most severe form of leishmaniasis. Approximately 20% of zoonotic human visceral leishmaniasis worldwide is caused by Leishmania infantum, which is also known as Leishmania chagasi in Latin America, and disease incidence is increasing in urban and peri-urban areas of the tropics. In this form of disease, dogs are the main reservoirs. Diagnostic methods used to identify Leishmania infected animals are not able to detect all of the infected ones, which can compromise the effectiveness of disease control. Therefore, to contribute to the improvement of diagnostic methods for canine visceral leishmaniasis (CVL), we aimed to identify and test novel antigens using high-throughput analysis.

Methodology/Principal Findings

Immunodominant proteins from L. infantum were mapped in silico to predict B cell epitopes, and the 360 predicted peptides were synthesized on cellulose membranes. Immunoassays were used to select the most reactive peptides, which were then investigated with canine sera. Next, the 10 most reactive peptides were synthesized using solid phase peptide synthesis protocol and tested using ELISA. The sensitivity and specificity of these peptides were also compared to the EIE-LVC Bio-Manguinhos kit, which is recommended by the Brazilian Ministry of Health for use in leishmaniasis control programs. The sensitivity and specificity of the selected synthesized peptides was as high as 88.70% and 95.00%, respectively, whereas the EIE-LVC kit had a sensitivity of 13.08% and 100.00% of specificity. Although the tests based on synthetic peptides were able to diagnose up to 94.80% of asymptomatic dogs with leishmaniasis, the EIE-LVC kit failed to detect the disease in any of the infected asymptomatic dogs.

Conclusions/Significance

Our study shows that ELISA using synthetic peptides is a technique with great potential for diagnosing CVL; furthermore, the use of these peptides in other diagnostic methodologies, such as immunochromatographic tests, could be beneficial to CVL control programs.  相似文献   

6.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

7.

Background

The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs'' sera.

Methodology/Main Findings

Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws'' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies.

Conclusions/Significance

This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.  相似文献   

8.

Background

Visceral leishmaniasis due to Leishmania infantum is currently spreading into new foci across Europe. Leishmania infantum transmission in the Old World was reported to be strongly associated with a few specific environments. Environmental changes due to global warming or human activity were therefore incriminated in the spread of the disease. However, comprehensive studies were lacking to reliably identify all the environments at risk and thereby optimize monitoring and control strategy.

Methodology/Findings

We exhaustively collected 328 cases of autochthonous visceral leishmaniasis from 1993 to 2009 in South-Eastern France. Leishmaniasis incidence decreased from 31 yearly cases between 1993 and 1997 to 12 yearly cases between 2005 and 2009 mostly because Leishmania/HIV coinfection were less frequent. No spread of human visceral leishmaniasis was observed in the studied region. Two major foci were identified, associated with opposite environments: whereas one involved semi-rural hillside environments partly made of mixed forests, the other involved urban and peri-urban areas in and around the region main town, Marseille. The two neighboring foci were related to differing environments despite similar vectors (P. perniciosus), canine reservoir, parasite (L. infantum zymodeme MON-1), and human host.

Conclusions/Significance

This unprecedented collection of cases highlighted the occurrence of protracted urban transmission of L. infantum in France, a worrisome finding as the disease is currently spreading in other areas around the Mediterranean. These results complete previous studies about more widespread canine leishmaniasis or human asymptomatic carriage. This first application of systematic geostatistical methods to European human visceral leishmaniasis demonstrated an unsuspected heterogeneity of environments associated with the transmission of the disease. These findings modify the current view of leishmaniasis epidemiology. They notably stress the need for locally defined control strategies and extensive monitoring including in urban environments.  相似文献   

9.

Background

The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL).

Methodology/Principal Findings

Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively.

Conclusions/Significance

The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.  相似文献   

10.

Background

Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs).

Methodology/Principal Findings

Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid.

Conclusion/Significance

The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.  相似文献   

11.

Background

Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis.

Methodology/Principal Findings

Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes.

Conclusion/Significance

The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.  相似文献   

12.

Background

Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models.

Methods

We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured.

Principal Findings

Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain.

Conclusion

Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.  相似文献   

13.

Background

Various factors contribute to the urbanization of the visceral leishmaniasis (VL), including the difficulties of implementing control measures relating to the domestic reservoir. The aim of this study was to determine the prevalence of canine visceral leishmaniasis in an urban endemic area in Brazil and the factors associated with Leishmania infantum infection among seronegative and PCR-positive dogs.

Methodology

A cross-sectional study was conducted in Belo Horizonte, Minas Gerais, Brazil. Blood samples were collected from 1,443 dogs. Serology was carried out by using two enzyme-linked immunosorbent assays (Biomanguinhos/FIOCRUZ/RJ and “in house”), and molecular methods were developed, including PCR-RFLP. To identify the factors associated with early stages of infection, only seronegative (n = 1,213) animals were evaluated. These animals were divided into two groups: PCR-positive (n = 296) and PCR-negative (n = 917) for L. infantum DNA. A comparison of these two groups of dogs taking into consideration the characteristics of the animals and their owners was performed. A mixed logistic regression model was used to identify factors associated with L. infantum infection.

Principal Findings

Of the 1,443 dogs examined, 230 (15.9%) were seropositive in at least one ELISA, whereas PCR-RFLP revealed that 356 animals (24.7%) were positive for L. infantum DNA. Results indicated that the associated factors with infection were family incomeConclusionsPCR detected a high prevalence of L. infantum infection in dogs in an area under the Control Program of VL intervention. Socioeconomic variables, dog behavior and the knowledge of the owner regarding the vector were factors associated with canine visceral leishmaniasis (CVL). The absence of previous serological examination conducted by the control program was also associated with L. infantum infection. It is necessary to identify the risk factors associated with CVL to understand the expansion and urbanization of VL.  相似文献   

14.

Background

Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA.

Methodology/Principal Findings

In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area.

Conclusions/Significance

The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic.  相似文献   

15.

Background:

Cutaneous leishmaniasis is an endemic disease in many regions of Iran, including the city of Mashhad. In recent years, some cases have not responded to Glucantime, the usual treatment for this disease. The cellular immune response caused by T-helper type 1 (Th1) cells has an important role in protection against leishmaniasis, and activation of the T-helper type 2 (Th2) response causes progression of the disease. By analyzing these responses we hope to find a more effective treatment than that currently in use for leishmaniasis patients.

Methods:

The cellular immune responses in 60 cases of non-healing and healing cutaneous leishmaniasis, and individuals in a control group, were analyzed by measuring cytokines released by peripheral blood mononuclear cells (PBMCs) when stimulated with Leishmania major antigens by Enzyme Linked Immuno Sorbent Assay (ELISA).

Results:

Subjects from the healing group secreted more interleukin-12 (IL-12) and interferon gamma (IFN-γ) (p<0.05) and less interleukins -4, -5, -10 (IL-4, IL-5, and IL-10) (p<0.005) and -18 (IL-18) (p=0.003) than the non-healing group.

Conclusions:

The results demonstrate that secretion of cytokines that activate Th2 response including IL-4, IL-5 and IL-10 in non-healing subjects was higher than healing subjects and secretion of cytokines that activate Th1 response including IL-12 and IFN-γ in healing subjects was higher relative to the non-healing subjects. In this study it has been shown that the level of IL-18 progresses disease in non-healing patients when the level of IL-12 gets decreased. Key Words: Cytokines, Cutaneous leishmaniasis, Glucantime  相似文献   

16.

Background

Cutaneous leishmaniasis (CL) is a major public health problem in Libya. The objective of this study was to investigate, for the first time, epidemiological features of CL outbreaks in Libya including molecular identification of parasites, the geographical distribution of cases and possible scenarios of parasite transmission.

Methodology/Principal Findings

We studied 450 patients that came from 49 areas distributed in 12 districts in north-west Libya. The patients'' ages ranged from 9 months to 87 years (median age 25 years); 54% of the cases were males. Skin scrapings spotted on glass slides were collected for molecular identification of causative agent. The ribosomal internal transcribed spacer 1 (ITS1) was amplified and subsequently characterized by restriction fragment length polymorphism (RFLP) analysis. In total, 195 samples were successfully identified of which 148 (75.9%) were Leishmania major, and 47 (24.1%) Leishmania tropica. CL cases infected with L. major were found in all CL areas whereas L. tropica cases came mainly from Al Jabal Al Gharbi (46.4%), Misrata (17.8%) and Tarhuna districts (10.7%). A trend of seasonality was noticed for the infections with L. major which showed a clear peak between November and January, but was less pronounced for infections by L. tropica.

Conclusion

The first molecular study on CL in Libya revealed that the disease is caused by L. major and L. tropica and the epidemiological patterns in the different foci were the same as in other Mediterranean foci of CL.  相似文献   

17.

Background

Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease.

Methodology

We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice.

Results

In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC50 values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo.

Conclusions

A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.  相似文献   

18.

Background

Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region.

Principal Findings

KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World.

Conclusions

LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains.  相似文献   

19.

Background

Visceral leishmaniasis (VL), caused by infection with Leishmania donovani complex, remains a major public health problem in endemic regions of South Asia, East Africa, and Brazil. If untreated, symptomatic VL is usually fatal. Rapid field diagnosis relies principally on demonstration of anti-Leishmania antibodies in clinically suspect cases. The rK39 immunochromatographic rapid diagnostic test (RDT) is based on rK39, encoded by a fragment of a kinesin-related gene derived from a Brazilian L. chagasi, now recognised as L. infantum, originating from Europe. Despite its reliability in South Asia, the rK39 test is reported to have lower sensitivity in East Africa. A reason for this differential response may reside in the molecular diversity of the rK39 homologous sequences among East African L. donovani strains.

Methodology/Principal Findings

Coding sequences of rK39 homologues from East African L. donovani strains were amplified from genomic DNA, analysed for diversity from the rK39 sequence, and compared to South Asian sequences. East African sequences were revealed to display significant diversity from rK39. Most coding changes in the 5′ half of repeats were non-conservative, with multiple substitutions involving charge changes, whereas amino acid substitutions in the 3′ half of repeats were conservative. Specific polymorphisms were found between South Asian and East African strains. Diversity of HASPB1 and HASPB2 gene repeat sequences, used to flank sequences of a kinesin homologue in the synthetic antigen rK28 designed to reduce variable RDT performance, was also investigated. Non-canonical combination repeat arrangements were revealed for HASPB1 and HASPB2 gene products in strains producing unpredicted size amplicons.

Conclusions/Significance

We demonstrate that there is extensive kinesin genetic diversity among strains in East Africa and between East Africa and South Asia, with ample scope for influencing performance of rK39 diagnostic assays. We also show the importance of targeted comparative genomics in guiding optimisation of recombinant/synthetic diagnostic antigens.  相似文献   

20.

Background

For effective control of visceral leishmaniasis (VL) in East Africa, new rapid diagnostic tests are required to replace current tests with low sensitivity. The aim of this study is to improve diagnosis of VL in East Africa by testing a new antigen from an autochthonous L. donovani strain in Sudan.

Methodology and Principle Findings

We cloned, expressed and purified a novel recombinant protein antigen of L. donovani from Sudan, designated rKLO8, that contains putative conserved domains with significant similarity to the immunodominant kinesin proteins of Leishmania. rKLO8 exhibited 93% and 88% amino acid identity with cloned kinesin proteins of L. infantum (synonymous L. chagasi) (K39) and L. donovani (KE16), respectively. We evaluated the diagnostic efficiency of the recombinant protein in ELISA for specific detection of VL patients from Sudan. Data were compared with a rK39 ELISA and two commercial kits, the rK39 strip test and the direct agglutination test (DAT). Of 106 parasitologically confirmed VL sera, 104 (98.1%) were tested positive by rKLO8 as compared to 102 (96.2%) by rK39. Importantly, the patients'' sera showed increased reactivity with rKLO8 than rK39. Specificity was 96.1% and 94.8% for rKLO8- and rK39 ELISAs, respectively. DAT showed 100% specificity and 94.3% sensitivity while rK39 strip test performed with 81.1% sensitivity and 98.7% specificity.

Conclusion

The increased reactivity of Sudanese VL sera with the rKLO8 makes this antigen a potential candidate for diagnosis of visceral leishmaniasis in Sudan. However, the suitability at the field level will depend on its performance in a rapid test format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号