首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels.Due to agricultural practices and climate change, soil salinity has become a serious factor limiting the productivity and quality of agricultural crops (Zhu, 2007). Worldwide, high salinity in the soil damages approximately 20% of total irrigated lands and takes 1.5 million ha out of production each year (Munns and Tester, 2008). In general, high salinity affects plant growth and development by reducing plant water potential, altering nutrient uptake, and increasing the accumulation of toxic ions (Hasegawa et al., 2000; Munns, 2002; Zhang and Shi, 2013). Together, these effects severely reduce plant growth and survival.Because the root is the first organ to sense high salinity, salt stress plays a direct, important role in modulating root system architecture (Wang et al., 2009). For instance, salt stress negatively regulates root hair formation and gravitropism (Sun et al., 2008; Wang et al., 2008). The role of salt in lateral root formation depends on the NaCl concentration. While high NaCl levels inhibit lateral root formation, lower NaCl levels stimulate lateral root formation in an auxin-dependent manner (Zolla et al., 2010; Ji et al., 2013). The root meristem plays an essential role in sustaining root growth (Perilli et al., 2012). Salt stress inhibits primary root elongation by suppressing root meristem activity (West et al., 2004). However, how this inhibition occurs remains largely unclear.Plant hormones are important intermediary signaling compounds that function downstream of environmental stimuli. Among plant hormones, indole-3-acetic acid (IAA) is thought to play a fundamental role in root system architecture by regulating cell division, expansion, and differentiation. In Arabidopsis (Arabidopsis thaliana) root tips, a distal auxin maximum is formed and maintained by polar auxin transport (PAT), which determines the orientation and extent of cell division in the root meristem as well as root pattern formation (Sabatini et al., 1999). PINFORMED (PIN) proteins, which are components of the auxin efflux machinery, regulate primary root elongation and root meristem size (Blilou et al., 2005; Dello Ioio et al., 2008; Yuan et al., 2013, 2014). The auxin signal transduction pathway is activated by direct binding of auxin to its receptor protein, TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB), promoting the degradation of Aux/IAA proteins, releasing auxin response factors (ARFs), and activating the expression of auxin-responsive genes (Gray et al., 2001; Dharmasiri et al., 2005a; Kepinski and Leyser, 2005). Aux/IAA proteins are short-lived, nuclear-localized proteins that play key roles in auxin signal activation and root growth modulation (Rouse et al., 1998). Other hormones and stresses often regulate auxin signaling by affecting Aux/IAA protein stability (Lim and Kunkel, 2004; Nemhauser et al., 2004; Wang et al., 2007; Kushwah and Laxmi, 2014).Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants (He et al., 2004; Fernández-Marcos et al., 2011; Shi et al., 2012), including important roles in the regulation of root growth and development. NO functions downstream of auxin during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002). Exogenous auxin-induced NO biosynthesis is associated with nitrate reductase activity during lateral root formation, and NO is necessary for auxin-induced lateral root and root hair development (Pagnussat et al., 2002; Lombardo et al., 2006). Pharmacological and genetic analyses in Arabidopsis indicate that NO suppresses primary root growth and root meristem activity (Fernández-Marcos et al., 2011). Additionally, both exogenous application of the NO donor sodium nitroprusside (SNP) and overaccumulation of NO in the mutant chlorophyll a/b binding protein underexpressed1 (cue1)/nitric oxide overproducer1 (nox1) result in reduced PIN1 expression and auxin accumulation in root tips. The auxin receptors protein TIR1 is S-nitrosylated by NO, suggesting that this protein is a direct target of NO in the regulation of root development (Terrile et al., 2012).Because NO is a free radical, NO levels are dynamically regulated by endogenous and environmental cues. Many phytohormones, including abscisic acid, auxin, cytokinin, salicylic acid, jasmonic acid, and ethylene, induce NO biosynthesis (Zottini et al., 2007; Kolbert et al., 2008; Tun et al., 2008; García et al., 2011). In addition, many abiotic and biotic stresses or stimuli, such as cold, heat, salt, drought, heavy metals, and pathogens/elicitors, also stimulate NO biosynthesis (Zhao et al., 2009; Mandal et al., 2012). Salt stress stimulates NO and ONOO accumulation in roots (Corpas et al., 2009), but the contribution of NO to root meristem growth under salinity stress has yet to be examined in detail.In this study, we found that salt stress significantly down-regulated the expression of PIN genes and promoted AUXIN RESISTANT3 (AXR3)/IAA17 stabilization. Furthermore, salt stress stimulated NO accumulation, and pharmacological inhibition of NO biosynthesis compromised the salt-mediated reduction in root meristem size. Our results support a model in which salt stress reduces root meristem size by increasing NO accumulation, which represses PIN expression and stabilizes IAA17, thereby reducing auxin levels and repressing auxin signaling.  相似文献   

7.
8.
9.
Polar transport of the hormone auxin through tissues and organs depends on membrane proteins, including some B-subgroup members of the ATP-binding cassette (ABC) transporter family. The messenger RNA level of at least one B-subgroup ABCB gene in Arabidopsis (Arabidopsis thaliana), ABCB19, increases upon treatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), possibly to compensate for an inhibitory effect of the drug on ABCB19 activity. Consistent with this hypothesis, NPPB blocked ion channel activity associated with ABCB19 expressed in human embryonic kidney cells as measured by patch-clamp electrophysiology. NPPB inhibited polar auxin transport through Arabidopsis seedling roots similarly to abcb19 mutations. NPPB also inhibited shootward auxin transport, which depends on the related ABCB4 protein. NPPB substantially decreased ABCB4 and ABCB19 protein levels when cycloheximide concomitantly inhibited new protein synthesis, indicating that blockage by NPPB enhances the degradation of ABCB transporters. Impairing the principal auxin transport streams in roots with NPPB caused aberrant patterns of auxin signaling reporters in root apices. Formation of the auxin-signaling gradient across the tips of gravity-stimulated roots, and its developmental consequence (gravitropism), were inhibited by micromolar concentrations of NPPB that did not affect growth rate. These results identify ion channel activity of ABCB19 that is blocked by NPPB, a compound that can now be considered an inhibitor of polar auxin transport with a defined molecular target.The directed flow of auxin from cell to cell, through tissues and organs, from sites of synthesis to sites of action underlies the coordination of many processes during plant growth and development. Arabidopsis (Arabidopsis thaliana) PIN-FORMED (PIN) genes were the first found to be necessary for the phenomenon known as polar auxin transport (Okada et al., 1991; Chen et al., 1998; Gälweiler et al., 1998). Asymmetric localization of PIN proteins to the downstream ends of each cell in auxin-transporting tissues was correctly suggested to be a molecular component of the efflux mechanisms (Gälweiler et al., 1998) originally hypothesized as necessary for a directionally biased, or polar movement of auxin through tissues (Rubery and Sheldrake, 1974; Raven, 1975; Goldsmith, 1977; Goldsmith et al., 1981). Other members of the eight-gene PIN family in Arabidopsis were subsequently shown to affect auxin distribution in various tissues and stages of development (Křeček et al., 2009).Shortly after the breakthrough work on PIN1, members of the B subfamily of ATP-binding cassette (ABCB) transporters were discovered to be equally necessary for the phenomenon of polar auxin transport. They were originally called P-GLYCOPROTEIN1 (Dudler and Hertig, 1992; Sidler et al., 1998) and MULTIDRUG RESISTANCE1 (Noh et al., 2001) and ultimately renamed AtABCB1 and AtABCB19, respectively (Verrier et al., 2008). The connection between ABCB transporters and auxin transport was first made through the analysis of Arabidopsis knockout mutants. Polar auxin flow through abcb19 mutant stems is impaired by approximately 80% compared with the wild type and further reduced in abcb1 abcb19 double mutants (Noh et al., 2001). Resultant effects on development include abnormal hypocotyl tropisms (Noh et al., 2003) and the photomorphogenic control of hypocotyl elongation (Wu et al., 2010). Import of indole-3-acetic acid (IAA) to cotyledons through the petiole is reduced by 50% in abcb19 mutants, and this is correlated with an equivalent reduction in cotyledon blade expansion (Lewis et al., 2009). In roots, loss of ABCB19 greatly impairs auxin flow toward the tip without any detectable effect on shootward flow (Lewis et al., 2007). Surprisingly, the only defect detected in abcb19 primary roots associated with this major disruption of auxin transport is greater meandering of the tip during elongation down a vertical agar surface; gravitropism is unaffected (Lewis et al., 2007). Outgrowth of lateral roots, although not their initiation, depends significantly on ABCB19-mediated tipward auxin transport (Wu et al., 2007). The emergence of adventitious roots at the base of hypocotyls from which roots have been excised from Arabidopsis seedlings depends strongly on ABCB19-mediated auxin accumulation at the sites of primordium initiation (Sukumar et al., 2013).The ABCB19 protein is present predominantly in the central cylinder and cortex of the root, consistent with its role in rootward auxin transport (Lewis et al., 2007; Mravec et al., 2008), whereas the closely related ABCB4 is restricted to the lateral root cap and epidermis (Cho et al., 2007), where it functions in shootward auxin transport (Lewis et al., 2007). Loss of ABCB4 function alters the timing and spatial pattern of gravitropic curvature development, apparently because the gravity-induced auxin gradient across the root is less rapidly dissipated by normal shootward (basipetal) transport of the hormone through the elongation zone (Lewis et al., 2007). Root hairs are significantly longer in abcb4 mutants, a phenotype attributed to auxin accumulation due to impaired efflux (Cho et al., 2007). ABCB4 is reported to conduct auxin influx or efflux, depending on the prevailing external auxin concentration (Kubeš et al., 2012).Noh et al. (2001) originally isolated ABCB19 in a molecular screen for genes encoding an ion channel activity in Arabidopsis cells shown by patch-clamp electrophysiology to be blocked by 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB). The rationale for the screen was that a plant challenged with a channel blocker would overexpress the gene encoding the blocked activity. A hypothesis emerging from the Noh et al. (2001) study is that ABCB19 encodes such an ion channel, which is required for polar auxin transport. If true, NPPB would be established as a blocker of polar auxin transport.Pharmacological inhibitors, used for decades in auxin transport research, have some advantages over mutations. Mutations can create complicating pleiotropic effects by inhibiting the process throughout development, while inhibitors can be used to impose an effect at a specific time. 1-Naphthylphthalamic acid (NPA) is the most commonly used inhibitor of polar auxin transport (Katekar and Geissler, 1980), but others are being discovered (Rojas-Pierce et al., 2007; Kim et al., 2010; Tsuda et al., 2011). Inhibitors are especially useful when their targets are well defined, which would be the case if NPPB blocked ABCB19 and induced its expression as hypothesized. The experiments reported here were designed to test this hypothesis with electrophysiological measurements of ABCB19 transport activity, radiotracer measurements of polar auxin transport in roots, levels of fluorescently tagged ABCB19 proteins, auxin reporter expression patterns, and machine-vision measurements of a root growth response that depends on auxin redistribution.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号