首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the human cerebrospinal fluid (CSF) proteome was mapped using three different strategies prior to Orbitrap LC-MS/MS analysis: SDS-PAGE and mixed mode reversed phase-anion exchange for mapping the global CSF proteome, and hydrazide-based glycopeptide capture for mapping glycopeptides. A maximal protein set of 3081 proteins (28,811 peptide sequences) was identified, of which 520 were identified as glycoproteins from the glycopeptide enrichment strategy, including 1121 glycopeptides and their glycosylation sites. To our knowledge, this is the largest number of identified proteins and glycopeptides reported for CSF, including 417 glycosylation sites not previously reported. From parallel plasma samples, we identified 1050 proteins (9739 peptide sequences). An overlap of 877 proteins was found between the two body fluids, whereas 2204 proteins were identified only in CSF and 173 only in plasma. All mapping results are freely available via the new CSF Proteome Resource (http://probe.uib.no/csf-pr), which can be used to navigate the CSF proteome and help guide the selection of signature peptides in targeted quantitative proteomics.Cerebrospinal fluid (CSF)1 surrounds and supports the central nervous system (CNS), including the ventricles and subarachnoid space (1). About 80% of the total protein amount in CSF derives from size-dependent filtration of blood across the blood-brain barrier (BBB), and the rest originate from drainage of interstitial fluid from the CNS (24). Because CSF is in direct contact with the CNS, it should be a promising source for finding biomarkers for diseases in the CNS (5).Mapping studies characterizing the human CSF proteome and peptidome has previously been carried out using various experimental designs, including both healthy and disease-affected individuals (516). A total of 2630 proteins were detected in normal CSF by immunoaffinity depletion of high abundant proteins followed by strong cation exchange fractionation and LC-MS (5), whereas proteome and peptidome analyses of human CSF (collected for diagnostic purposes and turned out normal) by gel separation and trypsin digestion followed by LC-MS analysis have shown 798 proteins and 563 peptide products (derived from 91 precursor proteins) (6). In another publication, Pan et al. combined several proteomics studies in CSF from both normal subjects and subjects with neurological diseases and created a dataset of 2594 identified proteins (16). But in general, the availability and usefulness of published data from proteome mapping experiments is scarce, and the format of the data often makes searching and comparison across datasets difficult. Thus, organizing the data in online databases would greatly benefit the scientific community by making the data more accessible and easier to query. Current online databases containing MS data for CSF include the Sys-BodyFluid, with a total of 1286 CSF proteins from six studies (17). The proteome identifications database (PRIDE) (18) includes 19 studies on human CSF, but none reporting more than 103 identified proteins.Glycosylation is one of the most common post-translational modifications (PTMs), and many known clinical biomarkers as well as therapeutic targets are glycoproteins (1925). Furthermore, glycosylation plays important roles in cell communication, signaling, aging, and cell adhesion (26, 27). Nevertheless, there are few studies on glycoprotein identification in CSF. One study identified 216 glycoproteins in CSF using both lectin affinity and hydrazide chemistry (8), and another reported 36 N-linked and 44 O-linked glycosylation sites, from 23 and 22 glycoproteins respectively, by enriching for sialic-acid containing glycopeptides (28).Considering the sparse information about the CSF proteome available in public repositories, we have combined several proteomics approaches to create a map of the global CSF proteome, the CSF glycoproteome, and the respective plasma proteome from a pool of 21 (20 for the plasma pool) neurologically healthy individuals. The large amount of data generated through these four datasets (with linked and complementary information) would not easily be accessible through existing repositories. We therefore developed the open access CSF Proteome Resource (CSF-PR, www.probe.uib.no/csf-pr), an online database including the detailed data from the four different proteomics experiments described in this study. CSF-PR will be particularly useful in guiding the selection of appropriate signature peptides for the development of targeted CSF protein assays.  相似文献   

2.
Mass spectrometry based proteomics has facilitated sperm composition studies in several mammalian species but no studies have been undertaken in non-human primate species. Here we report the analysis of the 1247 proteins that comprise the Rhesus macaque (Macaca mulatta) sperm proteome (termed the MacSP). Comparative analysis with previously characterized mouse and human sperm proteomes reveals substantial levels of orthology (47% and 40% respectively) and widespread overlap of functional categories based on Gene Ontology analyses. Approximately 10% of macaque sperm genes (113/1247) are significantly under-expressed in the testis as compared with other tissues, which may reflect proteins specifically acquired during epididymal maturation. Phylogenetic and genomic analyses of three MacSP ADAMs (A-Disintegrin and Metalloprotease proteins), ADAM18-, 20- and 21-like, provides empirical support for sperm genes functioning in non-human primate taxa which have been subsequently lost in the lineages leading to humans. The MacSP contains proteasome proteins of the 20S core subunit, the 19S proteasome activator complex and an alternate proteasome activator PA200, raising the possibility that proteasome activity is present in mature sperm. Robust empirical characterization of the Rhesus sperm proteome should greatly expand the possibility for targeted molecular studies of spermatogenesis and fertilization in a commonly used model species for human infertility.The application of mass spectrometry (MS) based proteomics, coupled with whole genome annotation of an increasing number of species, has greatly extended our knowledge of sperm composition. Traditional methods used to assess sperm composition, including the use of sperm-specific antibodies and 2D gel electrophoresis, have identified a limited number of sperm proteins. These traditional studies have been augmented in recent years by the use of high throughput and highly sensitive MS (shotgun proteomics) that have substantially increased the accuracy of peptide identification, resulting in a significant increase in proteome coverage. Indeed, advances in MS instrumentation, data acquisition, and the availability of genome annotations have, for example, increased sperm proteome coverage in Drosophila from 381 (1) to 1108 proteins (2) over a five year period.Two main MS based methodologies have been applied to study sperm composition, including (i) 2D PAGE followed by spot excision and MS and (ii) digestion of proteins, followed by MS/MS analysis of the resulting peptides (3). Although each method has its own advantages and disadvantages, a far greater level of proteome coverage is obtained using MS/MS (4). A previous comparative study found that each method identified proteins not found in the other and vice versa, and therefore it has been suggested that these methods should be used to complement each other (5). Thus, although no single methodology yet exists capable of producing a complete whole cell proteome, MS/MS methods provide deeper and broader coverage and are therefore the current method of choice. Shotgun proteomics has characterized sperm proteomes in a variety of taxa including plants, invertebrates and mammals such as human, mouse, rat, and bull (3, 611). These studies achieve varying levels of proteome coverage as a result of several factors including the choice of MS equipment, sample acquisition, purification, solublization, and fractionation schemes. Although these different approaches make direct comparisons difficult they nevertheless have provided invaluable information regarding the composition of sperm and have helped to identify novel proteins that play important roles in sperm function and reproduction.In this study we use MS based proteomics to elucidate the sperm proteome of a species of old world monkey, the Rhesus macaque (Macaca mulatta). Due primarily to their genetic and physiological similarities to humans, Rhesus macaques are the most widely used nonhuman primate model system for basic and applied biomedical research (12). Rhesus macaques are also used extensively as a model of human reproduction where numerous similarities at the molecular level have been observed between gametes of the two species, and why Rhesus macaques have become a useful model system for fertility and assisted reproductive technology research (13). A more complete knowledge of the sperm proteome will facilitate reproductive studies using the Rhesus macaque as a model organism. However, despite its widespread use in reproductive biology, the macaque sperm proteome (MacSP)1 has yet to be characterized.Although insight into the MacSP will facilitate reproductive studies using the Rhesus macaque as a model organism, this knowledge can also be used to better understand the composition of human sperm. Sperm mature and gain fertilization competency as they traverse the epididymis, a specialized duct that connects the testis to the vas deferens (14). During the maturation process, sperm lose or modify a number of their surface proteins and gain additional transient or permanent surface proteins in a well-organized manner, and it is only after emerging from the cauda epididymis that sperm are motile and considered fertilization competent (14, 15).Proteomic studies of human sperm have been undertaken (3, 6, 10), identifying between 98–1760 sperm proteins, however these studies used sperm from ejaculates which complicates sperm proteome analysis. A previous study identified 923 proteins present in human seminal plasma (16), which is likely to be only a fraction of the seminal plasma proteome. Human sperm proteome data sets derived from human ejaculates makes it difficult to differentiate which of the identified proteins are sperm or seminal plasma constituents. For example, a major seminal protein family, the semenogelins are not expressed in the testis but are found in sperm proteomes determined from ejaculates (6, 10). Such highly abundant seminal proteins may mask lower abundance integral sperm proteins and inhibit their identification by MS. In order to avoid these problems, we collected mature sperm directly from the cauda epididymis of the Rhesus macaque, thus avoiding contamination from seminal plasma proteins.In the present study, sperm proteins were separated using 1D SDS-PAGE, digested and the resulting peptides analyzed by LC MS/MS. Using high stringency parameters for peptide identification, we conservatively identified 1247 proteins from purified samples of Rhesus macaque sperm. Given their close evolutionary relationship, the Rhesus macaque and human share 93% nucleotide homology (12). Data from this study can be used to complement what is currently known about the composition of human sperm and provides a more useful proxy of human sperm proteome composition than the proteomes of other non-primate mammals for which data is available. Studies of sperm composition, especially those in human, can be applied to develop novel molecular based clinical diagnostic tests of sperm quality, which is currently limited to evaluating parameters such as sperm count, morphology and motility. In addition, knowledge of sperm components can lead to the discovery of novel contraceptives and infertility treatments.  相似文献   

3.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

4.
5.
Protein–protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.Protein–protein interactions (PPIs)1 play a key role in defining protein functions in biological systems. Aberrant PPIs can have drastic effects on biochemical activities essential to cell homeostasis, growth, and proliferation, and thereby lead to various human diseases (1). Consequently, PPI interfaces have been recognized as a new paradigm for drug development. Therefore, mapping PPIs and their interaction interfaces in living cells is critical not only for a comprehensive understanding of protein function and regulation, but also for describing the molecular mechanisms underlying human pathologies and identifying potential targets for better therapeutics.Several strategies exist for identifying and mapping PPIs, including yeast two-hybrid, protein microarray, and affinity purification mass spectrometry (AP-MS) (25). Thanks to new developments in sample preparation strategies, mass spectrometry technologies, and bioinformatics tools, AP-MS has become a powerful and preferred method for studying PPIs at the systems level (69). Unlike other approaches, AP-MS experiments allow the capture of protein interactions directly from their natural cellular environment, thus better retaining native protein structures and biologically relevant interactions. In addition, a broader scope of PPI networks can be obtained with greater sensitivity, accuracy, versatility, and speed. Despite the success of this very promising technique, AP-MS experiments can lead to the loss of weak/transient interactions and/or the reorganization of protein interactions during biochemical manipulation under native purification conditions. To circumvent these problems, in vivo chemical cross-linking has been successfully employed to stabilize protein interactions in native cells or tissues prior to cell lysis (1016). The resulting covalent bonds formed between interacting partners allow affinity purification under stringent and fully denaturing conditions, consequently reducing nonspecific background while preserving stable and weak/transient interactions (1216). Subsequent mass spectrometric analysis can reveal not only the identities of interacting proteins, but also cross-linked amino acid residues. The latter provides direct molecular evidence describing the physical contacts between and within proteins (17). This information can be used for computational modeling to establish structural topologies of proteins and protein complexes (1722), as well as for generating experimentally derived protein interaction network topology maps (23, 24). Thus, cross-linking mass spectrometry (XL-MS) strategies represent a powerful and emergent technology that possesses unparalleled capabilities for studying PPIs.Despite their great potential, current XL-MS studies that have aimed to identify cross-linked peptides have been mostly limited to in vitro cross-linking experiments, with few successfully identifying protein interaction interfaces in living cells (24, 25). This is largely because XL-MS studies remain challenging due to the inherent difficulty in the effective MS detection and accurate identification of cross-linked peptides, as well as in unambiguous assignment of cross-linked residues. In general, cross-linked products are heterogeneous and low in abundance relative to non-cross-linked products. In addition, their MS fragmentation is too complex to be interpreted using conventional database searching tools (17, 26). It is noted that almost all of the current in vivo PPI studies utilize formaldehyde cross-linking because of its membrane permeability and fast kinetics (1016). However, in comparison to the most commonly used amine reactive NHS ester cross-linkers, identification of formaldehyde cross-linked peptides is even more challenging because of its promiscuous nonspecific reactivity and extremely short spacer length (27). Therefore, further developments in reagents and methods are urgently needed to enable simple MS detection and effective identification of in vivo cross-linked products, and thus allow the mapping of authentic protein contact sites as established in cells, especially for protein complexes.Various efforts have been made to address the limitations of XL-MS studies, resulting in new developments in bioinformatics tools for improved data interpretation (2832) and new designs of cross-linking reagents for enhanced MS analysis of cross-linked peptides (24, 3339). Among these approaches, the development of new cross-linking reagents holds great promise for mapping PPIs on the systems level. One class of cross-linking reagents containing an enrichment handle have been shown to allow selective isolation of cross-linked products from complex mixtures, boosting their detectability by MS (3335, 4042). A second class of cross-linkers containing MS-cleavable bonds have proven to be effective in facilitating the unambiguous identification of cross-linked peptides (3639, 43, 44), as the resulting cross-linked products can be identified based on their characteristic and simplified fragmentation behavior during MS analysis. Therefore, an ideal cross-linking reagent would possess the combined features of both classes of cross-linkers. To advance the study of in vivo PPIs, we have developed a new XL-MS platform based on a novel membrane-permeable, enrichable, and MS-cleavable cross-linker, Azide-A-DSBSO (azide-tagged, acid-cleavable disuccinimidyl bis-sulfoxide), and multistage tandem mass spectrometry (MSn). This new XL-MS strategy has been successfully employed to map in vivo PPIs from mammalian cells at both the proteome scale and the targeted protein complex level.  相似文献   

6.
Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS3 analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS3) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.Proteins form stable and dynamic multisubunit complexes under different physiological conditions to maintain cell viability and normal cell homeostasis. Detailed knowledge of protein interactions and protein complex structures is fundamental to understanding how individual proteins function within a complex and how the complex functions as a whole. However, structural elucidation of large multisubunit protein complexes has been difficult because of a lack of technologies that can effectively handle their dynamic and heterogeneous nature. Traditional methods such as nuclear magnetic resonance (NMR) analysis and x-ray crystallography can yield detailed information on protein structures; however, NMR spectroscopy requires large quantities of pure protein in a specific solvent, whereas x-ray crystallography is often limited by the crystallization process.In recent years, chemical cross-linking coupled with mass spectrometry (MS) has become a powerful method for studying protein interactions (13). Chemical cross-linking stabilizes protein interactions through the formation of covalent bonds and allows the detection of stable, weak, and/or transient protein-protein interactions in native cells or tissues (49). In addition to capturing protein interacting partners, many studies have shown that chemical cross-linking can yield low resolution structural information about the constraints within a molecule (2, 3, 10) or protein complex (1113). The application of chemical cross-linking, enzymatic digestion, and subsequent mass spectrometric and computational analyses for the elucidation of three-dimensional protein structures offers distinct advantages over traditional methods because of its speed, sensitivity, and versatility. Identification of cross-linked peptides provides distance constraints that aid in constructing the structural topology of proteins and/or protein complexes. Although this approach has been successful, effective detection and accurate identification of cross-linked peptides as well as unambiguous assignment of cross-linked sites remain extremely challenging due to their low abundance and complicated fragmentation behavior in MS analysis (2, 3, 10, 14). Therefore, new reagents and methods are urgently needed to allow unambiguous identification of cross-linked products and to improve the speed and accuracy of data analysis to facilitate its application in structural elucidation of large protein complexes.A number of approaches have been developed to facilitate MS detection of low abundance cross-linked peptides from complex mixtures. These include selective enrichment using affinity purification with biotinylated cross-linkers (1517) and click chemistry with alkyne-tagged (18) or azide-tagged (19, 20) cross-linkers. In addition, Staudinger ligation has recently been shown to be effective for selective enrichment of azide-tagged cross-linked peptides (21). Apart from enrichment, detection of cross-linked peptides can be achieved by isotope-labeled (2224), fluorescently labeled (25), and mass tag-labeled cross-linking reagents (16, 26). These methods can identify cross-linked peptides with MS analysis, but interpretation of the data generated from interlinked peptides (two peptides connected with the cross-link) by automated database searching remains difficult. Several bioinformatics tools have thus been developed to interpret MS/MS data and determine interlinked peptide sequences from complex mixtures (12, 14, 2732). Although promising, further developments are still needed to make such data analyses as robust and reliable as analyzing MS/MS data of single peptide sequences using existing database searching tools (e.g. Protein Prospector, Mascot, or SEQUEST).Various types of cleavable cross-linkers with distinct chemical properties have been developed to facilitate MS identification and characterization of cross-linked peptides. These include UV photocleavable (33), chemical cleavable (19), isotopically coded cleavable (24), and MS-cleavable reagents (16, 26, 3438). MS-cleavable cross-linkers have received considerable attention because the resulting cross-linked products can be identified based on their characteristic fragmentation behavior observed during MS analysis. Gas-phase cleavage sites result in the detection of a “reporter” ion (26), single peptide chain fragment ions (3538), or both reporter and fragment ions (16, 34). In each case, further structural characterization of the peptide product ions generated during the cleavage reaction can be accomplished by subsequent MSn1 analysis. Among these linkers, the “fixed charge” sulfonium ion-containing cross-linker developed by Lu et al. (37) appears to be the most attractive as it allows specific and selective fragmentation of cross-linked peptides regardless of their charge and amino acid composition based on their studies with model peptides.Despite the availability of multiple types of cleavable cross-linkers, most of the applications have been limited to the study of model peptides and single proteins. Additionally, complicated synthesis and fragmentation patterns have impeded most of the known MS-cleavable cross-linkers from wide adaptation by the community. Here we describe the design and characterization of a novel and simple MS-cleavable cross-linker, DSSO, and its application to model peptides and proteins and the yeast 20 S proteasome complex. In combination with new software developed for data integration, we were able to identify DSSO-cross-linked peptides from complex peptide mixtures with speed and accuracy. Given its effectiveness and simplicity, we anticipate a broader application of this MS-cleavable cross-linker in the study of structural topology of other protein complexes using cross-linking and mass spectrometry.  相似文献   

7.
8.
Top-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work. In all, 347 mitochondrial proteins were identified, including ∼50% of the mitochondrial proteome below 30 kDa and over 75% of the subunits constituting the large complexes of oxidative phosphorylation. Three hundred of the identified proteins were found to be integral membrane proteins containing between 1 and 12 transmembrane helices, requiring no specific enrichment or modified LC-MS parameters. Over 5,000 proteoforms were observed, many harboring post-translational modifications, including over a dozen proteins containing lipid anchors (some previously unknown) and many others with phosphorylation and methylation modifications. Comparison between untreated and senescent H1299 cells revealed several changes to the proteome, including the hyperphosphorylation of HMGA2. This work illustrates the burgeoning ability of top-down proteomics to characterize large numbers of intact proteoforms in a high-throughput fashion.Although traditional bottom-up approaches to mass-spectrometry-based proteomics are capable of identifying thousands of protein groups from a complex mixture, proteolytic digestion can result in the loss of information pertaining to post-translational modifications and sequence variants (1, 2). The recent implementation of top-down proteomics in a high-throughput format using either Fourier transform ion cyclotron resonance (35) or Orbitrap instruments (6, 7) has shown an increasing scale of applicability while preserving information on combinatorial modifications and highly related sequence variants. For example, the identification of over 500 bacterial proteins helped researchers find covalent switches on cysteines (7), and over 1,000 proteins were identified from human cells (3). Such advances have driven the detection of whole protein forms, now simply called proteoforms (8), with several laboratories now seeking to tie these to specific functions in cell and disease biology (911).The term “proteoform” denotes a specific primary structure of an intact protein molecule that arises from a specific gene and refers to a precise combination of genetic variation, splice variants, and post-translational modifications. Whereas special attention is required in order to accomplish gene- and variant-specific identifications via the bottom-up approach, top-down proteomics routinely links proteins to specific genes without the problem of protein inference. However, the fully automated characterization of whole proteoforms still represents a significant challenge in the field. Another major challenge is to extend the top-down approach to the study of whole integral membrane proteins, whose hydrophobicity can often limit their analysis via LC-MS (5, 1216). Though integral membrane proteins are often difficult to solubilize, the long stretches of sequence information provided from fragmentation of their transmembrane domains in the gas phase can actually aid in their identification (5, 13).In parallel to the early days of bottom-up proteomics a decade ago (1721), in this work we brought the latest methods for top-down proteomics into combination with subcellular fractionation and cellular treatments to expand coverage of the human proteome. We utilized multiple dimensions of separation and an Orbitrap Elite mass spectrometer to achieve large-scale interrogation of intact proteins derived from H1299 cells. For this focus issue on post-translational modifications, we report this summary of findings from the largest implementation of top-down proteomics to date, which resulted in the identification of 1,220 proteins and thousands more proteoforms. We also applied the platform to H1299 cells induced into senescence by treatment with the DNA-damaging agent camptothecin.  相似文献   

9.
10.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community.Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS)1 is an emerging technique that can be described as a multi-color molecular microscope as it allows visualizing the distribution of many molecules as mass to charge (m/z) signals in parallel in situ (1). Originally described some 15 years ago (2) the method has been successfully adapted to different analyte classes including small molecule drugs (3), metabolites (4), lipids (5), proteins (6), and peptides (7) using e.g. formalin fixed paraffin embedded (FFPE) as well as fresh frozen tissue (8). Because the tissue stays intact in the process, MALDI IMS is compatible with histochemistry (9) as well as immunohistochemistry and thus adds an additional dimension of molecular information to classical microscopy based tissue analysis (10). Imaging of proteins is appealing as it conceptually allows determining the localization and abundance of proteoforms (11) that naturally occur in the tissue under investigation including modifications such as phosphorylation, acetylation, or ubiquitination, protease mediated cleavage or truncation (12). Therefore a proteinous m/z species detected by MALDI IMS can be viewed as an in situ molecular probe of a particular biological process. In turn, m/z abundance patterns that discriminate different physiological or pathological conditions might be used as diagnostic or even prognostic markers (13, 14). In recent years, MALDI IMS of proteins has been successfully applied to different cancer types from the brain (15), breast (16, 17), kidney (18), prostate (19), and skin (20). Furthermore, the technique has been applied in the context of colon inflammation (21), embryonic development (22), Alzheimer''s disease (23), and amyotrophic lateral sclerosis (24). With a few notable exceptions (13, 14, 1618, 20, 2430), the identity of the proteins constituting the observed characteristic m/z patters has generally remained elusive. This not only precludes the validation of the putative biomarkers by, for example, immunohistochemistry, but also the elucidation of the biological processes that might underlie the observed phenotype.Here, we introduce a straightforward extraction and identification method for proteins embedded in the MALDI matrix layer that represent the molecular species amenable to MALDI IMS. Using a bottom-up proteomics approach including tryptic digestion and liquid chromatography tandem mass spectrometry (LC-MS/MS), we first created an inventory list of proteins derived from this layer, which we term the MALDI matrix proteome. Although the bottom-up approach breaks the link between the identified proteins and the m/z species detected in MALDI IMS, the list of identified proteins serves as the pool of proteins from which all potential biomarkers are most likely derived. Indeed we detected >90% of all human MALDI IMS biomarkers reported in the literature by analyzing just ten human tissues. In addition, the results demonstrate that the same inventory can be used as a focused database for direct top-down sequencing and identification of proteins extracted from the MALDI matrix layer. The proposed method is generic and can be applied to any MALDI IMS study, which is why we believe that one of the major challenges in identifying MALDI IMS biomarkers has now been overcome. In addition, we provide a list of all proteins and peptides identified in the MALDI matrices and tissues studied here as well as a comprehensive list of m/z species identified in the literature dealing with MALDI imaging of humans and rodents. This information has been compiled in MaTisse (http://www.wzw.tum.de/bioanalytik/matisse), a new publically available and searchable database, which we believe will become a valuable tool for the MALDI imaging community.  相似文献   

11.
12.
13.
14.
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.Insights into many cellular processes require detailed information about interactions between the participating proteins. However, the analysis of such interactions can be challenging because of the often-diverse physicochemical properties and the abundances of the constituent proteins, as well as the sometimes wide range of affinities and complex dynamics of the interactions. One of the key challenges has been acquiring information concerning transient, low affinity interactions in highly complex cellular milieux (3, 4).Methods that allow elucidation of such information include co-localization microscopy (5), fluorescence protein Förster resonance energy transfer (4), immunoelectron microscopy (5), yeast two-hybrid (6), and affinity capture (7, 8). Among these, affinity capture (AC)1 has the unique potential to detect all specific in vivo interactions simultaneously, including those that interact both directly and indirectly. In recent times, the efficacy of such affinity isolation experiments has been greatly enhanced through the use of sensitive modern mass spectrometric protein identification techniques (9). Nevertheless, AC suffers from several shortcomings. These include the problem of 1) distinguishing specific from nonspecific interactors (10, 11); 2) preserving and isolating all unique interactions including those that are weak and/or transient, as well as those that exchange rapidly (10, 12, 13); and 3) differentiating proximal from more distant interactions (14).We describe here an approach to address these issues, which makes use of chemical stabilization of protein assemblies in the complex cellular milieu prior to AC. Chemical stabilization is an emerging technique for stabilizing and elucidating protein associations both in vitro (1520) and in vivo (3, 12, 14, 2129), with mass spectrometric (MS) readout of the AC proteins and their connectivities. Such chemical stabilization methods are indeed well-established and are often used in electron microscopy for preserving complexes and subcellular structures both in the cellular milieu (3) and in purified complexes (30, 31), wherein the most reliable, stable, and established stabilization reagents is glutaraldehyde. Recently, glutaraldehyde has been applied in the “GraFix” protocol in which purified protein complexes are subjected to centrifugation through a density gradient that also contains a gradient of glutaraldehyde (30, 31), allowing for optimal stabilization of authentic complexes and minimization of nonspecific associations and aggregation. GraFix has also been combined with mass spectrometry on purified complexes bound to EM grids to obtain a compositional analysis of the complexes (32), thereby raising the possibility that glutaraldehyde can be successfully utilized in conjunction with AC in complex cellular milieux directly.In this work, we present a robust pipeline for determining specific protein-protein interactions and proximities from cellular milieux. The first steps of the pipeline involve the well-established techniques of flash freezing the cells of interest in liquid nitrogen and cryomilling, which have been known for over a decade (33, 34) to preserve the cellular environment, as well as having shown outstanding performance when used in analysis of macromolecular interactions in yeast (3539), bacterial (40, 41), trypanosome (42), mouse (43), and human (4447) systems. The resulting frozen powder, composed of intact micron chunks of cells that have great surface area and outstanding solvent accessibility, is well suited for rapid low temperature chemical stabilization using glutaraldehyde. We selected glutaraldehyde for our procedure based on the fact that it is a very reactive stabilizing reagent, even at lower temperatures, and because it has already been shown to stabilize enzymes in their functional state (4850). We employed highly efficient, rapid, single stage affinity capture (36, 51) for isolation and bottom-up MS for analysis of the macromolecular assemblies of interest (5254). For convenience, we have termed this approach Stabilized Affinity-Capture Mass Spectrometry (SAC-MS).  相似文献   

15.
16.
17.
18.
A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change.Euryhaline fish are capable of living in fresh water (FW),1 brackish water (BW), seawater (SW), and hypersaline water (>SW). They adjust transepithelial ion transport across gill epithelium when challenged by an environmental salinity change (1). Acclimation from hyposmotic (relative to plasma, e.g. FW) to hyperosmotic (relative to plasma, e.g. SW) environments is accompanied by extensive remodeling of gill epithelium, the most prominent feature of which is an increase in the number and size of salt-secretory, mitochondria-rich ionocytes (2). In addition, molecular chaperones and distinct sets of transport proteins are activated when euryhaline fish are challenged by increasing environmental salinity (35). A euryhaline fish species in which these physiological responses have been observed is the Mozambique tilapia, Oreochromis mossambicus (68). Tilapia have evolved in Africa but have spread to subtropical and tropical freshwater and marine habitats throughout the world as a result of escaping from aquaculture farms and their high environmental adaptability. These cichlids tolerate salinities ranging from fresh water to almost 4× seawater (120 ppt) and they inhabit freshwater and hypersaline desert lakes as well as coastal marine and brackish habitats (9). This high salinity tolerance may have been selected for during tilapia evolution by frequent seasonal droughts and intermittent flooding events in their native African habitat containing salt-rich bedrock and soil (10). Tilapia are highly abundant in the California Salton Sea, which is a large hypersaline desert lake with an average salinity of 50 ppt and seasonal salinity increases up to 100 ppt in some parts (1113). Thus, studies investigating the mechanisms that enable tilapia to cope with extreme and diverse osmotic stress are of great interest from an ecophysiological perspective and for understanding the basis of their high invasiveness in novel habitats.Moreover, because of their outstanding osmotolerance tilapia are excellent models for studying the mechanisms of body water and electrolyte homeostasis in vertebrates. O. mossambicus is a very close relative of (and readily hybridizes with) the Nile tilapia, Oreochromis nilotics, for which a complete reference proteome is available in major databases, including UniProtKB (14, 15). Therefore, tilapia are well suited for proteomics studies directed at identifying, quantifying, and explaining molecular phenotypes (alterations in the proteome) induced by environmental stress. Because higher-order phenotypes (physiology, morphology, behavior) associated with salinity acclimation are well documented for tilapia, knowledge of the underlying molecular phenotypes will provide insight into the mechanisms that govern salinity acclimation of euryhaline fish (13, 16, 17). The main purpose of this study is to optimize and use a label-free quantitative proteomics (LFQ) workflow for molecular phenotyping of tilapia gill responses to salinity stress.The workflow consists of initial protein identification and global label-free quantitative (LFQ) profiling followed by subsequent targeted LFQ of particular proteins based on quantitatively diagnostic, validated peptide ions. High resolution and high retention-time reproducibility in nano-flow liquid chromatography in combination with fast, high mass accuracy and high resolution mass spectrometers have enabled large-scale LFQ of proteins (18). Both relative and absolute LFQ of proteins are possible (19, 20) and protein quantities can be inferred from either spectral counts or ion currents and chromatographic peak intensity (21, 22). Spectral counting procedures have been used to roughly approximate relative protein quantities in different samples (23). In the present study, the other approach for LFQ, quantitation of ion current intensity, is used for relative quantitation of protein abundances in gill tissue from salinity stressed fish compared with FW handling controls. The quantitative precision of carefully optimized ion current intensity-based LFQ approaches is comparable to that of isotopic label-based quantitation (24, 25). Ion current intensity can be measured as peak height (maximum ion current) or peak area (integral of extracted ion chromatogram) (2022). Because peak area provides a more accurate measure of peptide (and correspondingly protein) quantity this approach is used in the present study (21, 22).The present study applies this LFQ workflow to identify the specific isoforms of (a) proteins involved in transepithelial ion transport and (b) molecular chaperones that are regulated by environmental salinity in tilapia gills. Such information is very difficult and often impossible to obtain with antibody-based approaches because isoform-specific antibodies for fish proteins are rare and none are available for the tilapia proteins of interest. Therefore, most quantitative analyses of fish proteins by Western blot use antibodies made against a different species (or even a mammalian or other more distantly evolutionarily related homolog) that are not suitable to distinguish individual isoforms (e.g. 3, 26, 27). The present study also investigates whether salinity-induced changes in ionocyte number and size are reflected in abundances of mitochondrial proteins, whether there is disparity in how different mitochondrial proteins are regulated in response to salinity stress, and which mitochondrial proteins are most affected by salinity stress. In addition, the initial global profiling step of the LFQ proteomics workflow described and the deposition of corresponding identification and quantitation data in the public PRIDE repository (28, 29) provides quantitative information on many proteins for which no prior information about effects of salinity on their abundance is available.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号