首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that Cas9/gRNA mediates efficient genetic modifications in Drosophila. Through targeting seven loci, we achieved a germline efficiency of up to 100%. Genes in both heterochromatin and euchromatin can be modified efficiently. Thus the Cas9/gRNA system is an attractive tool for rapid disruption of essentially any gene in Drosophila.  相似文献   

2.
Iskra Katic  Helge Gro?hans 《Genetics》2013,195(3):1173-1176
We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.  相似文献   

3.
Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer “genes” in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report gene targeting during oogenesis with lethality inhibitor and CRISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.  相似文献   

4.
The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.  相似文献   

5.
The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome.  相似文献   

6.
We adapted the CRISPR–Cas9 system for template-mediated repair of targeted double-strand breaks via homologous recombination in Caenorhabditis elegans, enabling customized and efficient genome editing. This system can be used to create specific insertions, deletions, and base pair changes in the germline of C. elegans.  相似文献   

7.
Large chromosomal modifications have been performed in natural and laboratory evolution studies and hold tremendous potential for use in foundational research, medicine, and biotechnology applications. Recently, the type II bacterial Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR/Cas9) system has emerged as a powerful tool for genome editing in various organisms. In this study, we applied the CRISPR/Cas9 system to preform large fragment deletions in Saccharomyces cerevisiae and compared the performance activity to that of a traditional method that uses the Latour system. Here we report in S. Cerevisiae the CRIPR/Cas9 system has been used to delete fragments exceeding 30 kb. The use of the CRISPR/Cas9 system for generating chromosomal segment excision showed some potential advantages over the Latour system. All the results indicated that CRISPR/Cas9 system was a rapid, efficient, low-cost, and versatile method for genome editing and that it can be applied in further studies in the fields of biology, agriculture, and medicine.  相似文献   

8.
Mosaic animals have provided the platform for many fundamental discoveries in developmental biology, cell biology, and other fields. Techniques to produce mosaic animals by mitotic recombination have been extensively developed in Drosophila melanogaster but are less common for other laboratory organisms. Here, we report mosaic analysis by gRNA-induced crossing-over (MAGIC), a new technique for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9. MAGIC efficiently produces mosaic clones in both somatic tissues and the germline of Drosophila. Further, by developing a MAGIC toolkit for 1 chromosome arm, we demonstrate the method’s application in characterizing gene function in neural development and in generating fluorescently marked clones in wild-derived Drosophila strains. Eliminating the need to introduce recombinase-recognition sites into the genome, this simple and versatile system simplifies mosaic analysis in Drosophila and can in principle be applied in any organism that is compatible with CRISPR/Cas9.

Analysis of mosaic animals has been crucial in developmental and cell biology; this study describes a versatile, simple, and likely widely-applicable technique, MAGIC (mosaic analysis by gRNA-induced crossing-over), for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9.  相似文献   

9.
Metamorphosis in insects includes a series of programmed tissue histolysis and remolding processes that are controlled by two major classes of hormones, juvenile hormones and ecdysteroids. Precise pulses of ecdysteroids (the most active ecdysteroid is 20-hydroxyecdysone, 20E), are regulated by both biosynthesis and metabolism. In this study, we show that ecdysone oxidase (EO), a 20E inactivation enzyme, expresses predominantly in the midgut during the early pupal stage in the lepidopteran model insect, Bombyx mori. Depletion of BmEO using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system extended the duration of the final instar larval stage. Ubiquitous transgenic overexpression of BmEO using the Gal4/UAS system induced lethality during the larval–pupal transition. When BmEO was specifically overexpressed in the middle silk gland (MSG), degeneration of MSG at the onset of metamorphosis was blocked. Transmission electron microscope and LysoTracker analyses showed that the autophagy pathway in MSG is inhibited by BmEO ectopic expression. Furthermore, RNA-seq analysis revealed that the genes involved in autophagic cell death and the mTOR signal pathway are affected by overexpression of BmEO. Taken together, BmEO functional studies reported here provide insights into ecdysone regulation of tissue degeneration during metamorphosis.  相似文献   

10.
Alexandra Franz  Erich Brunner 《Fly》2017,11(4):303-311
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.  相似文献   

11.
12.
13.
The Atlantic salmon (Salmo salar) serum lectin (SSL) is a soluble C-type lectin that binds bacteria, including salmon pathogens. This lectin is a cysteine-rich oligomeric protein. Consequently, a Drosophila melanogaster expression system was evaluated for use in expressing SSL. A cDNA encoding SSL was cloned into a vector designed to express it as a fusion protein with a hexahistidine tag, under the control of the Drosophila methallothionein promoter. The resulting construct was stably transfected into Drosophila S2 cells. After CdCl2 induction, transfected S2 cells secreted recombinant SSL into the cell culture medium. A cell line derived from stably transformed polyclonal cell populations expressing SSL was used for large-scale expression of SSL. Recombinant SSL was purified from the culture medium using a two-step purification scheme involving affinity binding to yeast cells and metal-affinity chromatography. Although yields of SSL were very low, correct folding and functionality of the recombinant SSL purified in this manner was demonstrated by its ability to bind to Aeromonas salmonicida. Therefore, Drosophila S2 cells may be an ideal system for the production of SSL if yields can be increased.  相似文献   

14.
15.
16.
Background and Aims The first documented observation of pollination in Pleurothallidinae was that of Endrés, who noticed that the ‘viscid sepals’ of Specklinia endotrachys were visited by a ‘small fly’. Chase would later identify the visiting flies as being members of the genus Drosophila. This study documents and describes how species of the S. endotrachys complex are pollinated by different Drosophila species.Methods Specimens of Specklinia and Drosophila were collected in the field in Costa Rica and preserved in the JBL and L herbaria. Flies were photographed, filmed and observed for several days during a 2-year period and were identified by a combination of non-invasive DNA barcoding and anatomical surveys. Tissue samples of the sepals, petals and labellum of Specklinia species were observed and documented by SEM, LM and TEM. Electroantennogram experiments were carried out on Drosophila hydei using the known aggregation pheromones ethyl tiglate, methyl tiglate and isopropyl tiglate. Floral compounds were analysed by gas chromatography–mass spectometry using those same pheromones as standards.Key Results Flowers of S. endotrachys, S. pfavii, S. remotiflora and S. spectabilis are visited and pollinated by several different but closely related Drosophila species. The flies are arrested by aggregation pheromones, including ethyl tiglate, methyl tiglate and isopropyl tiglate, released by the flowers, and to which at least D. hydei is very sensitive. Visible nectar drops on the adaxial surface of sepals are secreted by nectar-secreting stomata, encouraging male and female Drosophila to linger on the flowers for several hours at a time. The flies frequently show courtship behaviour, occasionally copulating. Several different Drosophila species can be found on a single Specklinia species.Conclusions Species of the S. endotrachys group share a similar pollination syndrome. There seem to be no species-specific relationships between the orchids and the flies. It is not expected that Specklinia species will hybridize naturally as their populations do not overlap geographically. The combination of pheromone attraction and nectar feeding is likely to be a generalized pollination syndrome in Pleurothallidinae.  相似文献   

17.
18.
The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications.  相似文献   

19.
CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5′ ends (8-nt repeat-derived 5′ tag sequences) but heterogeneous 3′ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3′ end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号