首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
目的探讨肝细胞生长因子(HGF)抑制糖基化终产物(AGEs)诱导人脐静脉内皮细胞凋亡的作用及其相关分子机制。方法体外培养ECV-304人脐静脉内皮细胞,采用噻唑蓝(MTT)法测定HGF对AGEs作用后ECV-304细胞生长抑制率的影响;通过Hoechst33258荧光染色观察细胞形态学改变、流式细胞术测定AnnexinV-FITC/PI双染标记的细胞凋亡率,检测HGF对AGEs诱导ECV-304细胞凋亡的影响;Western印迹法检测Bax、Bcl-2蛋白的表达。结果HGF能明显降低AGEs对ECV-304细胞生长的抑制作用;AGE诱导培养的ECV-304细胞出现明显的凋亡形态学改变,在一定浓度范围内,ECV-304细胞凋亡率与AGEs的浓度和作用时间呈依赖关系,加入HGF处理后可显著降低不同时间的内皮细胞凋亡率;HGF作用ECV-304细胞后Bcl-2蛋白表达明显升高,而Bax蛋白表达无明显变化。结论AGEs能诱导内皮细胞凋亡,而HGF能部分抑制AGEs诱导的内皮细胞凋亡,其作用机制可能与上调Bcl-2蛋白的表达水平有关。  相似文献   

2.
To investigate the effects of GSPB2 (grape seed procyanidin B2) on the apoptosis of HUVECs (human umbilical endothelial cells) induced by AGEs (advanced glycation end products), HUVECs were treated with AGEs (200 μg/ml) in the presence or absence of GSPB2 (2.5, 5.0 and 10.0 μmol/l). Our findings showed that (i) AGEs induced HUVEC apoptosis and up-regulated the expression of caspase-3 activation and lactadherin and reduced the phosphorylation of GSK3β (glycogen synthase kinase 3β) at baseline. (ii) Treatment of HUVEC with GSPB2 significantly inhibited the cell apoptosis and the expression of caspase-3 activation and lactadherin induced by AGEs. Moreover, GSPB2 inhibited intracellular reactive oxygen species in a dose-dependent manner in AGEs-treated cells as determined by flow cytometry. (iii) GSPB2 increased the phosphorylation of GSK3β of HUVEC in response to AGEs. These findings suggest that the signalling pathway involving phosphorylation of GSK3β and lactadherin might play a key role in the endothelial apoptosis. GSPB2 therapy could become an effective approach to battling AGEs-induced endothelial apoptosis.  相似文献   

3.
The apoptosis of human periodontal ligament cells (HPDLCs) may be an important factor of the negative effect of advanced glycation end products (AGEs) on the periodontal tissue of diabetic patients. However, the pathways or potential effects of apoptosis in AGEs-treated HPDLCs have not been fully elucidated. Autophagy is closely related to apoptosis. Herein, we investigated the potential mechanism of apoptosis and autophagy in HPDLCs treated with AGEs via an in vitro model. We found that AGEs-treated HPDLCs showed a time- and concentration-dependent reduction in the cell survival rate. The mitochondrial-dependent apoptosis was induced in AGEs-treated HPDLCs, as confirmed by the mitochondrial membrane potential depolarization, decreased Bcl-2 expression, increased Bax expression, and increased caspase-3 and PARP cleavage. Autophagy was also induced in AGEs-treated HPDLCs, as indicated by the conversion of LC3-II/LC3-I and the presence of autophagosomes. Interestingly, our study results suggested that apoptosis and autophagy were related to reactive oxygen species (ROS) production. In addition, AGEs-induced autophagy acted as a latent factor in decreasing the generation of ROS in HPDLCs and protecting against the AGEs-induced apoptosis. In summary, our study shows that ROS are essential in AGEs-induced HPDLCs apoptosis and autophagy, which may be a molecular mechanism for the repairment of ROS-induced damage in HPDLCs treated with AGEs to promote cell survival. The present study might provide new insights into the therapeutic targeting of HPDLCs autophagy, which could be an additional strategy for periodontitis in patients with diabetes mellitus.  相似文献   

4.
One of characteristics of diabetes mellitus (DM) is endothelial cell (EC) dysfunction and apoptosis which contributes to the development of vasculopathy. Advanced glycation end products (AGEs) continuously produced in the setting of DM play an important role in causing EC dysfunction and apoptosis. However, the underlying molecular mechanism remains largely elusive. Lactadherin, a secreted glycoprotein of milk-fat globule, is expressed by multiple cell types of arterial wall including ECs. Our previous proteomic studies showed that the expression of lactadherin was significantly increased in the aorta of diabetic rats as compared with control rats and treatment with grape seed procyanidin extracts significantly inhibited the lactadherin expression in diabetic rats. We hypothesized that lactadherin plays a critical role in AGEs-induced EC apoptosis; grape seed procyanidin B2 (GSPB2) and resveratrol protect against AGEs-induced EC apoptosis through lactadherin regulation. Our results showed that AGEs upregulated lactadherin expression and lactadherin RNA interference significantly attenuated AGEs-induced EC apoptosis. Overexpression of lactadherin increased EC apoptosis with up-regulation of Bax/Bcl-2 ratio, cytochrome c release, caspase-9 and caspase-3 activation suggesting the involvement of mitochondria apoptosis pathway. Mechanistically, overexpression of lactadherin reduced the phosphorylation of GSK3beta at baseline. Our study also revealed nine proteins interacting with lactadherin in HUVEC and study of these candidate proteins could unveil further underlying molecular mechanisms. In summary, our study identified lactadherin as a key player responsible for AGEs-induced EC apoptosis and antioxidants GSPB2 and resveratrol protect against AGEs-induced EC apoptosis by inhibiting lactadherin. Targeting lactadherin with antioxidant could be translated into clinical application in the fighting against DM complications.  相似文献   

5.
Endothelial dysfunction is recognized as the initial detectable stage of cardiovascular disease, a serious complication of diabetes. In this study, we evaluated effects of myricetin on high glucose (HG)-elicited oxidative damage in human umbilical vein endothelial cells (HUVECs). The cells were pre-incubated with myricetin and then treated with HG to induce apoptosis. The effect of myricetin on viability was investigated by MTT assay. The levels of lipid peroxidation (LPO) were determined by thiobarbituric acid (TBA) method. The protein expression of Bax, Bcl-2 and caspase-3 was measured by western blot analysis. Moreover, the effect of myricetin on total antioxidant capacity (TAC) and total thiol molecules was also determined. Our results showed that myricetin was able to markedly restore the viability of endothelial cells under oxidative stress. Myricetin reduced HG-caused increase in LPO levels. Also, TAC and total thiol molecules were notably elevated by myricetin. Incubation with myricetin decreased the protein expression levels of Bax, whereas it increased the expression levels of the Bcl-2, compared with HG treatment alone. Furthermore, myricetin significantly decreased cleaved caspase-3 protein expression. It is concluded that myricetin may protect HUVECs from oxidative stress induced by HG via increasing cell TAC and reducing Bax/Bcl-2 protein ratio, and caspase-3 expression.  相似文献   

6.
目的探讨晚期糖基化终产物(AGEs)对人脐静脉内皮细胞的肝细胞生长因子(HGF)mRNA及蛋白表达的影响。方法体外培养人脐静脉内皮细胞,予不同浓度(100mg/L、200mg/L、400mg/L)的AGEs刺激24h及400mg/LAGEs作用6h、12h、24h及48h,采用RT-PCR及免疫细胞化学法检测内皮细胞HGFmRNA及蛋白的表达水平。结果在一定范围内随着AGEs浓度增加,内皮细胞HGF表达逐渐增高;AGEs早期作用内皮细胞,促进HGFmR-NA及蛋白的表达,随着AGEs的持续作用,HGF表达减弱。结论随着AGEs作用时间的延长,HGF对受损内皮细胞的修复作用先增强后减弱。  相似文献   

7.
Sustained exposure to high glucose (HG) results in dysfunction of vascular endothelial cells. Hence, diabetic patients often suffer from secondary vascular damages, such as vascular sclerosis and thrombogenesis, which may eventually cause cardiovascular problems. Thus, elucidating how HG results in vascular endothelial cell damage and finding an approach for prevention are important to prevent and treat vascular damages in diabetic patients. In the current study, we first showed that 72-hour exposure to HG-decreased hsa-miRNA-29a and increased the expression of Bcl-2 associated X protein (Bax), which subsequently inhibited Bcl-2 and promoted the expression of apoptotic protease activating factor-1 and activation of caspase-3, thus directly triggering the mitochondrial apoptotic pathway in human umbilical vein endothelial cells (HUVECs). Study of the underlying mechanism showed that hsa-miRNA-29a/Bax plays an essential role in the decreased proliferation and increased apoptosis of HUVECs induced by HG, and overexpression of hsa-miRNA-29a effectively inhibits HG-induced apoptosis and restores the proliferation and tube formation of HUVECs exposed to HG by inhibiting its target gene Bax. In short, our study demonstrates that hsa-miRNA-29a is a promising target for the prevention and treatment of vascular injury in diabetic patients.  相似文献   

8.
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.  相似文献   

9.
目的: 探讨抑制lncRNA PVT1对高糖诱导的血管内皮细胞的增殖,凋亡和氧化应激的影响。方法: 体外培养人脐静脉内皮细胞(HUVECs),分为四组:对照组(5.5 mmol/L葡萄糖),高糖组(30 mmol/L葡萄糖),高糖+siNC组(30 mmol/L葡萄糖+siNC,细胞转染阴性对照组),高糖+siPVT1组(30 mmol/L葡萄糖+siPVT1,抑制lncRNA PVT1组)。采用荧光定量PCR的方法检测转染后PVT1的表达水平。MTT检测siPVT1(短片段干扰RNA PVT1)对高糖诱导的HUVECs细胞增殖能力的影响。流式细胞术检测siPVT1对高糖诱导的HUVECs细胞ROS和凋亡水平。Western blot检测HUVECs细胞中凋亡相关蛋白如Bax,Bcl-2和cleaved-caspase-3的表达水平。结果: 与对照组比较,转染siPVT1后,PVT1的表达水平显著降低(P<0.05)。MTT结果显示,与对照组比较,培养24 h和48 h后高糖组中HUVECs细胞增殖活力均显著降低,与高糖+siNC组(阴性对照组)比较,培养24 h和48 h后,高糖+siPVT1组中的HUVECs细胞增殖活力显著增加(P<0.05)。流式细胞术检测结果表明,与对照组比较,高糖组HUVECs细胞中ROS和凋亡率均显著增加;和高糖+siNC组比较,高糖+siPVT1组中HUVECs细胞中ROS和凋亡率均有减少(P<0.05)。Western blot结果表明,与对照组比较,高糖组中cleaved-caspase-3和Bax表达水平均显著上调,Bcl-2的表达水平显著下调(P<0.05,P<0.01)。与高糖+siNC组比较,高糖+siPVT1组cleaved-caspase-3和Bax表达水平显著下调,Bcl-2的表达显著上调(P<0.05,P<0.01)。结论: 抑制lncRNA PVT1可以显著增加高糖诱导的HUVECs细胞增殖活力,减轻氧化应激,抑制细胞凋亡。  相似文献   

10.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

11.
This paper investigated the effects of ox-LDL on PCSK9, and the molecular mechanisms of PCSK9 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cells (HUVECs), to clarify the role of PCSK9 in atherosclerogenesis. HUVECs were incubated with ox-LDL for 24?h. The apoptosis was observed by Hoechst 33258 staining. The expression of PCSK9, LOX-1 mRNAs and proteins was detected by RT-PCR, western blot, respectively. The PCSK9 siRNAs labeled with fluorescence were transfected into HUVECs by Lipofectamine 2000. After transfection for 24?h, cells were treated with ox-LDL for 24?h, HUVECs apoptosis transfected siRNA was detected by Hoechst 33258 staining and flow cytometer. The expression of Bcl-2, Bax, caspase3, 8, 9 was detected by western blot. The activity of caspase3, 9 was detected by kits. Our results showed that apoptosis of HUVECs and the expressions of PCSK9 and LOX-1 were upregulated secondary to induction by ox-LDL in a concentration-dependent manner. However, ox-LDL-induced HUVEC apoptosis and PCSK9 expression, but not LOX-1 expression, were significantly reduced by PCSK9 siRNA. These results demonstrate a linkage between HUVEC apoptosis and PCSK9 expression. Furthermore, we detected the possible pathway involved in apoptotic regulation by PCSK9 siRNA; our results showed that the expression of Bcl-2 decreased, whereas that of Bax increased. In addition, ox-LDL enhanced the activity of caspase9 and then caspase3. Pretreatment of HUVECs with PCSK9 siRNA blocked these effects of ox-LDL. These findings suggest that ox-LDL-induced HUVECs apoptosis could be inhibited by PCSK9 siRNA, in which Bcl/Bax-caspase9-caspase3 pathway maybe was involved through reducing the Bcl-2/Bax ratio and inhibited the activation of both caspase9 and 3.  相似文献   

12.
研究福安泰-03(Fuantai,FAT-03)对人脐静脉血管内皮细胞(humanumbilicalveinen-dothelialcells,HUVECs)凋亡和小鼠创伤愈合的影响。MTT法检查FAT-03对HUVECs和人低分化鼻咽癌细胞(CNE-2Z)生长的影响:聚碳酸酯膜小室趋化运动模型(Transwellmodel)检测,]FAT-03对HU-VECs运动能力的影响;荧光显微镜观察FAT-03作用下HUVECs的形态变化;膜联蛋白V-异硫氰酸荧光素(AnnexinV-fluoresceinisothiocyanate,AnnexinV-FITC)双染检测Ⅳm03对HUVECs早期凋亡的影响;流式细胞术分析FAT-03对HUVECs周期及凋亡的影响;Westernblot法分析FAT-03对HUVECs的血管内皮细胞生长因子(VEGF)、Bcl.2、Bax表达的影响;小鼠背部创伤模型检查FAT-03对组织修复的影响;免疫组化法检查FAT-03对创伤组织微血管密度(microvesseldensity,MVD)和VEGF表达的影响。结果显示,FAT-03明显抑制HUVECs细胞的增殖和迁移,其抑制效果与剂量和作用时间相关,作用HUVECs24,48,72h的Ic50值为0.22,0.17,0.09mg/mL,但FAT-03对CNE.2Z细胞的生长却无明显的影响;0.16mg/mLFAT-03作用HUVECs24h对细胞迁移的抑制率为57.9%(P<0.01):FAT_03处理HUVECs48h,细胞的早期凋亡率增加(P〈0.05);FAT-03阻滞HUVECs于G0/Gl期,并呈现典型的凋亡峰;0.16mg/mLFAT-03作用48,72h,HUVECs的凋亡率分别为14.6%、41.7%:鲋m03下调HUVECs的VEGF和抑凋亡基因Bcl-2的表达,上调促凋亡基因Bax的表达,其效果与剂量相关。FAT-03明显延迟小鼠创伤的愈合,且其作用与剂量相关。FAT-03组小鼠创伤周围组织微血管密度和VEGF阳性表达细胞都明显减少。因此,可以推测,FAT-03抑制HUVECs增殖并诱导其凋亡;抑制创伤组织的血管生成,进而延迟创伤愈合;它的这些作用可能与其下调VEGF、Bcl-2的表达,上调Bax的表达相关。  相似文献   

13.
14.
Resveratrol (3,4′,5-trihydroxystilbene) is a phytochemical believed to be partly responsible for the cardioprotective effects of red wine due to its numerous biological activities. Here, we studied biochemical pathways underlying peroxynitrite-mediated apoptosis in endothelial cells and potential mechanisms responsible for resveratrol cytoprotective action. Peroxynitrite triggered endothelial cell apoptosis through caspases-8, -9 and -3 activation implying both mitochondrial and death receptor apoptotic pathways. Resveratrol was able to prevent peroxynitrite-induced caspases-3 and -9 activation, but not caspase-8 activation. Additionally, peroxynitrite increased intracellular levels of Bax without affecting those of Bcl-2, increasing consequently the Bax/Bcl-2 ratio. This ratio decreased when cells where pre-incubated with 10 and 50 μM resveratrol, mainly due to resveratrol ability per se to increase Bcl-2 intracellular levels without affecting Bax intracellular levels. These results propose an additional mechanism whereby resveratrol may exert its cardioprotective effects and suggest a key role for Bcl-2 in the resveratrol anti-apoptotic action, especially in disrupting peroxynitrite-triggered mitochondrial pathway.  相似文献   

15.
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.  相似文献   

16.
Although the modulated expression of Dicer is documented upon neoplastic transformation, little is known of the regulation of Dicer expression by environmental stimuli and its roles in the regulation of cellular functions in primary cells. In this study, we found that Dicer expression was downregulated upon serum withdrawal in human umbilical vein endothelial cells (HUVECs). Serum withdrawal induced a time-dependent repression of Dicer expression, which was specifically rescued by vascular endothelial cell growth factor or sphingosine-1-phosphate. When Dicer expression was silenced by short-hairpin RNA against Dicer, the cells were more prone to apoptosis under serum withdrawal, whereas the rate of apoptosis was comparable with control cells in the serum-containing condition. Real-time PCR-based gene expression profiling identified several genes, the expression of which was modulated by Dicer silencing, including adhesion and matrix-related molecules, caspase-3, and nitric oxide synthase 3 (NOS3). Dicer silencing markedly impaired migratory functions without affecting cell adhesion and repressed phosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 in adherent HUVECs. Dicer knockdown upregulated caspase-3 and downregulated NOS3 expression, and serum withdrawal indeed increased caspase-3 and decreased NOS3 expression. Furthermore, the overexpression of Dicer in HUVECs resulted in a marked reduction in apoptosis upon serum withdrawal and a decreased caspase-3 and increased NOS3 expression. The inhibition of NOS activity by Nomega-nitro-L-arginine methyl ester abrogated the effect of Dicer overexpression to rescue the cells from serum withdrawal-induced apoptosis. These results indicated that serum withdrawal decreases Dicer expression, leading to an increased susceptibility to apoptosis through the regulation of caspase-3 and NOS3 expression.  相似文献   

17.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

18.
Endothelial injury is a major manifestation of septic shock induced by LPS. Recently, LPS was shown to induce apoptosis in different types of endothelial cells. In this study, we observed that pretreatment with vascular endothelial growth factor (VEGF), a known cell survival factor, blocked LPS-induced apoptosis in endothelial cells. We then further defined this LPS-induced apoptotic pathway and its inhibition by VEGF. We found that LPS treatment increased caspase-3 and caspase-1 activities and induced the cleavage of focal adhesion kinase. LPS also augmented expression of the pro-apoptotic protein Bax and the tumor suppressor gene p53. The pro-apoptotic Bax was found to translocate to the mitochondria from the cytosol following stimulation with LPS. Pretreatment of endothelial cells with VEGF inhibited the induction of both Bax and p53 as well as the activation of caspase-3. These data suggest that VEGF inhibits LPS-induced endothelial apoptosis by blocking pathways that lead to caspase activation.  相似文献   

19.
The underlying molecular mechanism whereby hyperglycemia causes endothelial cell apoptosis is not well understood. This study aims to elucidate the role of survival factor VEGF involved in the apoptosis of endothelial cells induced by elevated glucose. The present study confirmed that high concentration of glucose (25 mmol/l) significantly increased the apoptotic cell number in cultured primary human umbilical vein endothelial cells (HUVEC). Up-regulation of Bax/Bcl-2 ratio and activation of caspase-3 induced by high glucose suggested that mitochondria apoptosis pathway was involved. High glucose significantly reduced VEGF expression in HUVEC both at mRNA and protein levels. p42/44 MAPK phosphorylation was transitory attenuated when exposed to high glucose and preceded VEGF reduction, thus suggesting down-regulation of VEGF through inhibition of p42/44 MAPK. Addition of VEGF prevented HUVEC apoptosis from high glucose exposure. Moreover, elevated reactive oxygen species (ROS) generation, calcium overload, Bax/Bcl-2 ratio, caspase-3 activation in HUVEC induced by high glucose were reversed by pre-challenge with VEGF. This may represent a mechanism for the anti-apoptotic effect of VEGF. These results suggest that down-regulation of VEGF plays a critical role in apoptosis of endothelial cells induced by high glucose and restoration of VEGF might have benefits in the early stage of diabetic endothelial dysfunction. Zhonghan Yang, Xuehua Mo, and Qing Gong have contributed equally to this study.  相似文献   

20.
Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号