首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
THE GUT FLORA OF THE CHICK. II. THE ESTABLISHMENT OF THE FLORA   总被引:1,自引:1,他引:0  
SUMMARY: Viable counts were made in three media of material from the crop, gizzard, duodenum, ileum and caeca of chicks. Groups of birds 2, 4, 7, 10, 13, 16 and 30 days old were studied. The results showed that a balanced gut flora is established one day after feeding. An indication of the actual development of the flora was obtained in chicks 4 hr after feeding. The relationship between the flora at different ages and that in newly-hatched chicks before feeding is discussed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
田麻属的分类学研究   总被引:2,自引:0,他引:2  
唐亚 《植物分类学报》1994,32(3):251-257
本文对田麻属植物的分类进行了研究,确认1种2变种,归并了1种3变种1变型,降级1种。  相似文献   

13.
14.
The stigma papillae in Gladiolus are of the “dry” type and are highly vacuolated cells with an organelle-rich peripheral cytoplasm. The cell wall of each papilla is overlain by a distinctive cuticle possessing an irregularly scalloped inner margin. Between the cell wall and cuticle is a layer of amorphous sub-cuticular material. Lipids are detected on the papilla surface. A pollen grain will hydrate and germinate only on a papilla and not on any other (non-papillate) portion of the stigma. The pollen tube penetrates the papilla cuticle, which is forced away from the papilla cell wall by sub-cuticular pollen tube growth. As the cuticle lifts away, the sub-cuticular material disperses. At the base of the papilla, the pollen tube grows onto the adaxial non-papillate surface of the stigma lobe. At this site, the cuticle has been lifted away from the underlying cells by release of a mucilaginous substance from the latter, and the pollen tube grows within this substance beneath the detached cuticle. The cytological features of Gladiolus papillae are compared with other stigma papillae described in the literature. Also, a review of the literature, as well as some of the findings of the present study, suggest that certain prevalent interpretations of dry stigma structure and function may be open to question.  相似文献   

15.
16.
17.
18.
19.
A study has been made of those proteins which might offer exceptions to the law that the fluidity of a protein solution is a linear function of the volume concentration; viz., egg albumin, serum albumin, pseudoglobulin, euglobulin, gelatin, and sodium caseinogenate. Solutions of egg albumin below 20 per cent by weight obey the above law but somewhat below 30 per cent the fluidities begin to be too high, presumably due to the contribution to the fluidity made by the deformation of the particles as they come into contact, as the fluidity approaches zero. The fluidity of serum albumin solutions shows a similar behavior, being exceptional above 15 per cent in weight. Pseudoglobulin and euglobulin give fluidity-concentration curves (Fig. 4) which are linear up to about 2.5 per cent each in a total range of 20 and 14 per cent respectively. From this singular point both compounds show a second range which is linear. Pseudoglobulin is the only substance whose solutions seem to show a third linear range. We have also used the data of Chick and Martin for sodium caseinogenate and found evidence for two linear régimes. It is desirable at this time to call attention to the measurements of the flow of glycogen solutions by Botazzi and d''Errico (14) which in Fluidity and See PDF for Structure plasticity, page 207, are expressed in rhes. The data show two linear fluidity curves of different slopes. In this case it was definitely known that the data for each curve were measured with different viscometers which suggested the possibility of an error in viscometry entering in to confuse the issue. We have no suspicions as to the reliability of the data studied in this paper; we only wish to caution the readers that our hypotheses based on these data must be regarded with due reserve until confirmed. We have found a formula (11) based on the supposed linear relation between logarithmic fluidities and concentration which is convenient to use within the range, but close examination reveals that it does not reproduce the data for the higher concentrations at 25° nor does it permit extrapolation to pure water It is not realistic enough because it does not contemplate any change of régime in going from viscous to non-Newtonian or plastic flow. The formula does not apply to any other of the proteins studied in this paper nor to the great majority of proteins already reported as following the linear law. These are serious objections. We have therefore offered as an alternative a simple formula (24) according to which the fluidities are additive in the viscous régime. When the emulsoid particles approach close packing, they are deformed and this deformation contributes to the flow and the fluidity volume concentration curve is again linear. In fact, there may be one or more additional changes of régime.  相似文献   

20.
《Ibis》1954,96(2):315-315
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号