首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been suggested that there is a geographic dichotomy in the pollination systems of chiropterophilous columnar cacti: in intra‐tropical areas they are pollinated almost exclusively by bats, whereas in extratropical areas they are pollinated by bats, birds and bees. However, currently the studies are clumped both taxonomically (mainly Pachycereeae species) and geographically (mainly in the Tehuacan Valley and the Sonoran Desert). This clumping limits the possibility of generalising the pattern to other regions or cactus tribes. Only four of the 36 chiropterophilous cacti in Pilosocereus have been studied. Despite the tropical distribution of two Pilosocereus species, bees account for 40–100% of their fruit set. We examined how specialised is the pollination system of P. leucocephalus in eastern Mexico. As we studied tropical populations, we expected a bat‐specialised pollination system. However, previous studies of Pilosocereus suggest that a generalised pollination system is also possible. We found that this cactus is mainly bat‐pollinated (bats account for 33–65% of fruit set); although to a lesser degree, diurnal visitors also caused some fruit set (7–15%). Diurnal visitors were more effective in populations containing honeybee hives. P. leucocephalus is partially self‐compatible (14–18% of fructification) but unable to set fruit without visitors. Despite the variation in pollination system, P. leucocephalus shows more affinity with other columnar cacti from tropical regions than with those from extratropical regions. Although we report here that a new species of tropical Pilosocereus is relatively bat‐specialised, this Cereeae genus is more flexible in its pollination system than the Pachycereeae genera.  相似文献   

2.
The nectar of Strelitzia reginae Ait. was analysed using enzymatic methods and found to contain glucose, fructose and sucrose. Sugar composition changed considerably over the nectar producing period: there was an increase in the amount of glucose (41%) and fructose (32%) between the early and middle stage of secretion and thereafter a decrease of 13 and 24%, respectively, towards the end of secretion. Although the amount of sucrose secreted was initially as much as the glucose and fructose combined, it subsequently decreased, first by 14% and then by 70% at the end of the secretory period so that, whereas in the initial stages of secretion sucrose was quantitatively the dominant sugar, glucose and fructose made up the major part of the nectar as secretion reached its conclusion.
The amounts of potassium and sodium remained at the same low level (around 150 and 30 μg g-1 [w/v) respectively) throughout secretion, while calcium (initially 18 μg g-1) and magnesium (initially 8.0 μg g-1) increased by 47 and 56% respectively, between the early and late stages of secretion. No free amino acids, inorganic phosphate or iron could be detected. Enzymatic analysis revealed only a trace amount of starch. Transmission electron micrographs from both immature and mature plants, however, showed starch grains among other cytoplasmic remnants in the nectary lumen. Mitochondria, vesicles, lipid droplets and ribosomes could also be identified among the luminal cytoplasmic remnants.  相似文献   

3.
Luis Navarro 《Biotropica》1999,31(4):618-625
The floral syndrome of Macleania bullataYeo (Ericaceae) reflects its adaptation to hummingbird pollination. Its flowers, however, are subject to high levels of nectar robbing. I examined the floral visitor assemblage of M. bullata in a tropical montane wet forest in southwestern Colombia, focusing on the behavior of the visitors. I also tested for the presence of nocturnal pollination and the effects of nectar removal on new nectar production. The principal floral visitors were the nectar robbing hummingbirds Ocreatus underwoodii (19.1% of visits) and Chlorostilbon mellisugus (18.9%). Only two species of long–billed hummingbirds visited the flowers of M. bullata as “legitimate” pollinators: Coeligena torquata (14.7% of visits) and Doryfera ludoviciae (14.3%). The remaining visits constituted nectar robbing by bees, butterflies, and other species of hummingbirds. Nocturnal pollination took place, although fruit set levels were 2.4 times higher when only diurnal pollination was allowed as opposed to exclusively nocturnal pollination. Nectar robbers removed floral nectar without pollinating the flower. Treatments of experimental nectar removal were carried out to examine if flowers synthesize more nectar after nectar removal. Nectar removal increased the total volume of nectar produced by each flower without affecting sugar concentration. Thus, nectar robbing can impose a high cost to the plants by forcing them to replace lost nectar.  相似文献   

4.
5.
 We studied nectar characteristics during the long flowering period (late June to end of November) in two populations of Linaria vulgaris (L.) Mill. spontaneously growing in the Botanical Gardens of Siena University (Tuscany, central Italy). The two populations were close to each other but they differed in blooming period. Plants of population 1 sprouted in May and flowered from the end of June to the end of September. Population 2 sprouted at the end of August and flowered from September to the end of November. Differences in nectar production and composition were found between and within populations. Flowers of population 1 produced a very small amount of nectar (not collectable) that remained on the nectary surface. The quantity of nectar increased in late September, when each flower produced 2–3 μl of nectar that flowed into the spur. Total sugar concentration was 175.8 mg/ml in young flowers. Flowers of population 2 produced 5–8 μl of nectar with a total sugar concentration of 200.9 mg/ml in the young stage. In bagged senescent flowers nectar volume decreased in both populations and nectar sugar concentration decreased down to 11.6 mg/ml in population 2 and increased up to 289.6 mg/ml in population 1. For both populations, the decrease in nectar volume in bagged flowers may have been due to water loss by evaporation. In population 2, the decrease in sugar concentration may have been due to nectar reabsorption that was never observed in population 1. Nectar variability is discussed in relation to insect visits and seed set. Received August 14, 2002; accepted December 17, 2002 Published online: June 2, 2003  相似文献   

6.
    
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

7.
Crane flies and microlepidoptera have been recorded as pollinators in unrelated orchid groups, but these insects have never been recorded in Epidendroideae, the most species‐rich orchid subfamily, which includes one of the most diverse genera among Orchidaceae, Epidendrum. Based on data on phenology, floral morpho‐anatomy, pollinators, pollination mechanisms and breeding system, the reproductive biology of E. avicula was studied in south‐eastern Brazil. Epidendrum avicula possess osmophores that produce a citric fragrance at night. The flowers attract Tipulidae flies and several families of microlepidoptera that drink the nectar produced in a tube formed by the adnation of the labellum and column. As is common in Epidendrum, after removing the pollinarium, both crane flies and micro‐moths get trapped by the proboscis, which frightens the insects and inhibits any possible intent to immediately visit another flower. The behavior of the pollinators on flowers, plus the retention of the anther cap by the pollinarium, results in a reduction in the occurrence of geitonogamy. Because E. avicula is self‐incompatible, the consequence of pollinator behavior and the floral mechanisms tend to reduce the pollen loss. As far as we know, this is the first study to report the reproductive biology of a species of Epidendroideae pollinated by crane flies and microlepidoptera. Based on more recent concepts of plant–pollinator interactions, although E. avicula is pollinated by several species belonging to two distinct orders, suggesting an unspecialized pollination system is involved, nectar‐seeking microlepidoptera and Tipulidae flies can be recognized as a single functional group.  相似文献   

8.
    
With many plant–pollinator interactions undergoing change as species’ distributions shift, we require a better understanding of how the addition of new interacting partners can affect plant reproduction. One such group of floral visitors, nectar robbers, can deplete plants of nectar rewards without contributing to pollination. The addition of nectar robbing to the floral visitor assemblage could therefore have costs to the plant´s reproductive output. We focus on a recent plant colonist, Digitalis purpurea, a plant that in its native range is rarely robbed, but experiences intense nectar robbing in areas it has been introduced to. Here, we test the costs to reproduction following experimental nectar robbing. To identify any changes in the behavior of the principal pollinators in response to nectar robbing, we measured visitation rates, visit duration, proportion of flowers visited, and rate of rejection of inflorescences. To find the effects of robbing on fitness, we used proxies for female and male components of reproductive output, by measuring the seeds produced per fruit and the pollen export, respectively. Nectar robbing significantly reduced the rate of visitation and lengths of visits by bumblebees. Additionally, bumblebees visited a lower proportion of flowers on an inflorescence that had robbed flowers. We found that flowers in the robbed treatment produced significantly fewer seeds per fruit on average but did not export fewer pollen grains. Our finding that robbing leads to reduced seed production could be due to fewer and shorter visits to flowers leading to less effective pollination. We discuss the potential consequences of new pollinator environments, such as exposure to nectar robbing, for plant reproduction.  相似文献   

9.
10.
11.
  总被引:2,自引:0,他引:2  
1. Females of the desert solitary bee Anthophora pauperata collect nectar and pollen almost exclusively from Alkanna orientalis (Boraginaceae). The bee and plant are found together in the early spring, living in the bottom of steep-sided wadis (dry river valleys) at an altitude of 1500 m in Egyptian Sinai. 2. Female A. pauperata showed clear morning and afternoon peaks in foraging activity, separated by a 2–3 h midday period spent in their underground nests. This study analyses the following in order to identify the factors structuring this daily pattern: thermal aspects of the bee and its environment, temporal patterns of resource provision by the plant, and female nectar and pollen foraging behaviour. 3. Although A. pauperata can generate substantial heat endothermically, morning and evening ambient temperatures well below 10 °C defined a thermal window within which foraging occurred. Maximum air temperatures were moderate (25–30 °C), and examination of the physiology and behaviour of A. pauperata suggests that the midday reduction in flight activity was not due to thermal constraints. 4. Alkanna orientalis produces protandrous hermaphroditic flowers. Female A. pauperata collected pollen from male-phase flowers and harvested nectar preferentially from female-phase flowers. Although the nectar standing crop was relatively constant throughout the day, pollen availability peaked strongly in the early afternoon. 5. Female A. pauperata visited young male-phase flowers as soon as they opened, generating an early afternoon peak in pollen foraging activity and depleting the pollen standing crop rapidly. A morning peak in pollen foraging occurred when females gleaned remnant pollen from flowers that had opened the previous day. Pollen availability in the morning was far lower than in the early afternoon, and the time taken to collect a full pollen load in the morning was significantly longer. Collection of pollen in the morning despite very low resource availability suggests that pollen may be a limiting resource for A. pauperata. 6. In contrast to many existing examples of bimodal activity patterns in highly endothermic bees, the bimodal activity patterns of female A. pauperata appear to be driven not by thermal considerations but by daily patterns of pollen release from its principal food source.  相似文献   

12.
Abstract Melampyrum ciliare has tubular flowers predominantly visited by Bombus diversus. Floral structure (including the positions of anthers and stigma) and structure of the distal part of the corolla indicate cross-pollination by bumblebees. In M. ciliare, young flowers with white spots on the labium, which disappeared with flower aging, produced larger amounts of nectar than older ones without spots. Bumblebees visited flowers with white spots significantly more frequently than would be expected if they chose flowers randomly. These findings and the high seed production of open-pollinated flowers suggest effective pollination of M. ciliare by bumblebees.  相似文献   

13.
14.
Floral nectar production is central to plant pollination, and hence to human wellbeing. As floral nectar is essentially a solution in water of various sugars, it is likely a valuable plant resource, especially in terms of energy, with plants experiencing costs/trade-offs associated with its production or absorption and adopting mechanisms to regulate nectar in flowers. Possible costs of nectar production may also influence the evolution of nectar volume, concentration and composition, of pollination syndromes involving floral nectar, and the production of some crops. There has been frequent agreement that costs of floral nectar production are significant, but relevant evidence is scant and difficult to interpret. Convincing direct evidence comes from experimental studies that relate either enhanced nectar sugar production (through repeated nectar removal) to reduced ability to produce seeds, or increased sugar availability (through absorption of additional artificial nectar) to increased seed production. Proportions of available photosynthate allocated by plants to nectar production may also indicate nectar cost. However, such studies are rare, some do not include treatments of all (or almost all) flowers per plant, and all lack quantitative cost–benefit comparisons for nectar production. Additional circumstantial evidence of nectar cost is difficult to interpret and largely equivocal. Future research should repeat direct experimental approaches that relate reduced or enhanced nectar sugar availability for a plant with consequent ability to produce seeds. To avoid confounding effects of inter-flower resource transfer, each plant should experience a single treatment, with treatment of all or almost all flowers per plant. Resource allocation by plants, pathways used for resource transfer, and the locations of resource sources and sinks should also be investigated. Future research should also consider extension of nectar cost into other areas of biology. For example, evolutionary models of nectar production are rare but should be possible if plant fitness gains and costs associated with nectar production are expressed in the same currency, such as energy. It should then be possible to understand observed nectar production for different plant species and pollination syndromes involving floral nectar. In addition, potential economic benefits should be possible to assess if relationships between nectar production and crop value are evaluated.  相似文献   

15.
1. In insect‐pollinated plants, pollinator attraction is influenced by flowers (e.g. number, size) and their associated rewards (e.g. pollen, nectar). These traits can depend on plant interactions. Indeed, below‐ground competition between plants can lead to a decrease in flower or reward production in insect‐pollinated species. 2. Wind‐pollinated plants, in particular, which are almost never studied in plant–pollinator networks, can alter insect‐pollinated plants' attractiveness through competition for nutrients. The response of pollinators to such changes has never been investigated. 3. A pot experiment was carried out in which an insect‐pollinated species, Echium plantagineum, was grown in binary mixture with three wind‐pollinated species selected to exert a panel of competitive interactions. Below‐ground competition was controlled using dividers limiting interspecific root competition. Floral traits of E. plantagineum (i.e. flower production, floral display size, flower size and nectar production) were measured. For each species mixture, the visits (i.e. first visit, number of visits, 10‐min sequences) of Bombus terrestris individuals released in a flight cage containing two pots were followed, one with and one without below‐ground competition. 4. Below‐ground competition significantly affected nectar's sucrose concentration but did not influence flower and nectar production. Likewise, pollinator visits were not influenced by below‐ground competition. Competitor identity significantly influenced flower and reward production of E. plantagineum, with a decrease in the presence of the most competitive wind‐pollinated species. A tendency for faster flower visitation events was also detected in the presence of the least competitive competitor. This study raises new questions regarding the influence of wind‐pollinated plants on plant–pollinator interactions.  相似文献   

16.
传粉昆虫对我国中南地区油茶结实和结籽的作用   总被引:7,自引:0,他引:7       下载免费PDF全文
邓园艺  喻勋林  罗毅波 《生态学报》2010,30(16):4427-4436
油茶(Camellia oleifera)是一种重要的木本油料植物。2007-2008年在我国中南地区湖南省对油茶开展传粉生物学研究结果表明:油茶花期从10月到翌年1月份,单株开花时间一般持续20d左右,单花花期为4-5d。单花花蜜量平均为(145.40±24.89)μL,含糖量为(23.13±1.03)%,并含有17种氨基酸,约占花蜜总量的1.73%。膜翅目蜜蜂总科(Hymenoptera:Apoidea)油茶地蜂(Andrena camellia)和大分舌蜂(Colletes gigas)是油茶的有效传粉昆虫,大分舌蜂的传粉效率较油茶地蜂高;蝇类和蝶类为随机访问者。油茶不存在无融合生殖和自动自花授粉现象,其结实和结籽依赖传粉者。此外,油茶具有一定程度的自交不亲和,自交和异交的繁殖成功率存在显著性差异。人工异花授粉结果显示油茶在资源限制程度较低时,即大年时,花粉限制主要表现在结籽水平,而不是结实水平。根据油茶的传粉综合特征以及油茶在山茶属中的系统位置,目前很难解释油茶类似鸟类传粉综合特征的花蜜特征是如何演化的。  相似文献   

17.
    
Pollination ecology of many crops is not fully known, especially in tropical and subtropical regions. Non-bee pollinators may contribute substantially to crop yield, even if they do not receive much attention. Although moth pollination has fascinated ecologists and evolutionary biologists since Darwin, crop pollination by moths has not been well investigated and experimentally examined. Hence, we explored the pollination ecology of four cucurbit crops with crepuscular or nocturnal flowers. Lagenaria siceraria (Molina) Standl., Luffa acutangula (L.) Roxb., Trichosanthes anguina L., and Trichosanthes kirilowii Maxim. all display floral traits suggestive of moth pollination, such as opening around dusk or in evenings and secreting ample dilute nectar. We demonstrated that these crops’ flowers attracted a wide range of moth species, especially hawkmoths. The assemblage of flower-visiting moths varied according to location and season. Pollination treatments and pollen load analysis confirmed the pollination of the four crops by moths, especially hawkmoths. Our results provide evidence for the value as wild pollinators for the four crops, for which domesticated bees cannot provide reliable pollination services in practice. This study lends support to the proposal to pay more attention to the value of non-bee pollinators and to leave some areas unexploited in rural landscapes for the conservation of wild pollinators, including moths.  相似文献   

18.
传粉生物学中几种花蜜采集和糖浓度测定方法的比较   总被引:6,自引:0,他引:6  
花蜜的研究是花生物学中的一个重要内容,探寻实用的方法将方便野外操作。我们分别还用毛细管、注射器、滤纸条和离心法采集了5种花的花蜜,以比较各种方法的优劣,并用3种旋光测糖仪测量了慈姑Sagittaria trifolia L,的雌雄花的花蜜糖含量。目的是为寻找一种适合小型花的花蜜采集测量方法。结果表明,几种方法的适用性受花的大小、形状、蜜的分泌量及蜜腺位置的影响非常大,不同的花要采用不同的方法。对于一般的野外工作建议用毛细管采集后使用便携式旋光测糖仪测其糖含量。特别小的花和蜜量微小的花可以采用离心法收集。  相似文献   

19.
    
We quantified nectar‐robbing in two ornithophilus plant species by marking and monitoring robbed flowers and unrobbed flowers of each plant until fruit production. Significantly more marked unrobbed Cavendishia pubescens flowers successfully matured fruits than their robbed counterparts, while fruit set did not differ significantly between robbed and unrobbed flowers of Fuchsia venusta. In C. pubescens, birds of species known to be legitimate visitors sometimes behaved as secondary nectar robbers; conspecific birds handled flowers of F. venusta consistently. This behavioral change may contribute to the observed negative effect of nectar‐robbing on reproduction of C. pubescens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号