首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulation of embryonic smooth muscle myosin by protein kinase C   总被引:2,自引:0,他引:2  
Phosphorylation of the 20-kDa light chain regulates adult smooth muscle myosin; phosphorylation by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase stimulates the actomyosin ATPase activity of adult smooth muscle myosin; the simultaneous phosphorylation of a separate site on the 20-kDa light chain by the Ca2+/phospholipid-dependent enzyme protein kinase C attenuates the myosin light chain kinase-induced increase in the actomyosin ATPase activity of adult myosin. Fetal smooth muscle myosin, purified from 12-day-old fertilized chicken eggs, is structurally different from adult smooth muscle myosin. Nevertheless, phosphorylation of a single site on the 20-kDa light chain of fetal myosin by myosin light chain kinase results in stimulation of the actomyosin ATPase activity of this myosin. Protein kinase C, in contrast, phosphorylates three sites on the fetal myosin 20-kDa light chain including a serine or threonine residue on the same peptide phosphorylated by myosin light chain kinase. Interestingly, phosphorylation by protein kinase C stimulates the actomyosin ATPase activity of fetal myosin. Moreover, unlike adult myosin, there is no attenuation of the actomyosin ATPase activity when fetal myosin is simultaneously phosphorylated by myosin light chain kinase and protein kinase C. These data demonstrate, for the first time, the in vitro activation of a smooth muscle myosin by another enzyme besides myosin light chain kinase and raise the possibility of alternate pathways for regulating smooth muscle myosin in vivo.  相似文献   

2.
Ca2+-dependent phosphorylation of the myosin light chains in bovine aortic native actomyosin is markedly depressed in the presence of cyclic AMP and its dependent protein kinase. This inhibition occurs with either cardiac, skeletal, or aortic protein kinase plus cyclic AMP, while little or no inhibition occurs with either cyclic AMP or protein kinase alone. The extent of inhibition is related to the concentration of protein kinase and approaches a maximum of approximately 50%. Concomitant with the inhibition of myosin light chain phosphorylation is (a) an increased phosphorylation of a 100,000-dalton moiety which possibly corresponds to the myosin light chain kinase present in the native actomyosin preparation and (b) a decrease in the actomyosin Mg2+-ATPase activity. These findings suggest that modulation of actin-myosin interactions by the cAMP system directly at the level of the contractile proteins may represent a mechanism by which beta adrenergic relaxation occurs in mammalian vascular smooth muscle.  相似文献   

3.
Superprecipitation of reconstituted actomyosin composed of smooth muscle myosin, skeletal muscle actin and smooth muscle native tropomyosin was studied. When the actomyosin solution was preincubated in the presence of ATP and the absence of Ca2+, or in the relaxed state, superprecipitation was markedly suppressed. The extent of suppression was correlated with the inhibition of the phosphorylation of the 20,000-dalton light chain of smooth muscle myosin. This is consistent with the theory that the interaction of smooth muscle actomyosin is regulated by the phosphorylation of myosin light chain through a system of myosin light chain kinase and phosphatase. However, further studies showed that the myosin light chain kinase and phosphatase system could not explain the present suppression of superprecipitation, even if a cyclic AMP-dependent protein kinase system was also involved. A new regulatory factor should be taken into account in the regulation of smooth muscle actomyosin interaction.  相似文献   

4.
Two types of myosin light chain phosphatase from aortic smooth muscle extract were separated by chromatography on heparin-agarose. The phosphatase which appeared in the flow-through fractions had low activity on actomyosin, its apparent molecular mass was 260 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 36-39 kDa as determined by gel filtration. This phosphatase preferentially dephosphorylated the alpha-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. The phosphatase retained by heparin-agarose had high activity on actomyosin, its apparent molecular mass was 150 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 39-42 kDa. It preferentially dephosphorylated the beta-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. Myosin light chain was phosphorylated by myosin light chain kinase in peptides AB (Ser-P) and CD (Thr-P), and/or by protein kinase C in peptides E (Ser-P) and F (Thr-P) as determined by one-dimensional phosphopeptide mapping. The catalytic subunit of heparin-agarose flow-through phosphatase preferentially dephosphorylated peptide F over peptides AB, CD and E in both isolated light chain and actomyosin. The catalytic subunit of heparin-agarose bound phosphatase could effectively dephosphorylate all sites in isolated light chain, whereas it was less effective on dephosphorylation of peptide E in actomyosin.  相似文献   

5.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

6.
Actin-myosin interaction in aortic actomyosin reportedly requires phosphorylation of the 20,000 dalton myosin light chains. A spontaneously active phosphatase which dephosphorylates phosphorylase a and isolated phosphorylated cardiac myosin light chains was extracted from bovine aortic smooth muscle. This enzyme, when added to aortic native actomyosin (a) significantly suppressed phosphorylation of the light chains of the native hexameric smooth muscle myosin, (b) accelerated the rate and increased the magnitude of myosin light chain dephosphorylation in actomyosin that had been prephosphorylated, and (c) markedly attenuated the rate of actin-myosin interaction. These results support the hypothesis that myosin phosphorylation and subsequent actin-myosin interactions (contractility) in vascular smooth muscle may be modulated by spontaneously active aortic phosphatase.  相似文献   

7.
A protein kinase which depends on the simultaneous presence of Ca2+ and the modulator protein for its histone phosphorylation activity has been demonstrated in rabbit skeletal muscle and partially purified. The purified enzyme was not activated by cAMP, cGMP, or incubation with trypsin. Nor was the enzyme inhibited by the protein inhibitor of cAMP-dependent protein kinase. In addition to histone, myosin light chains and phosphorylase kinase served as substrates for the protein kinase, and their phosphorylation also depended on the presence of Ca2+ and the modulator protein. The phosphorylation of phosphorylase kinase was accompanied with a marked activation of the enzyme. The results suggest that the protein kinase has multiple functions and may be involved in the mediation of Ca2+ effects in many biological processes. It is proposed that this enzyme be designated as the modulator-dependent protein kinase. The modulator-dependent protein kinase may be identical to the myosin light chain kinase; chicken gizzard light chain kinase has been shown activatable by the modulator protein (Dabrowska, R., Sherry, J. M. F., Aramatorio, D. K., and Hartshorne, D. J. (1978) Biochemistry 17, 253-258).  相似文献   

8.
In vertebrate smooth muscle actomyosin and myofibrils a myosin light chain of molecular weight about 20,000 becomes phosphorylated at the same Ca2+ concentration as required to stimulate the actin-activated ATPase activity of myosin. Further, the degree of phosphorylation in the preparations as well as in various reconstituted actomyosins is proportional to their measured Ca2+ sensitivity. The phosphorylation process is very rapid and is essentially completed before the rise in ATPase activity. The enzyme responsible for the observed myosin phosphoylation is a specific myosin light chain kinase which is routinely co-purified with myosin. This kinase is normally present in actomyosin and its removal together with tropomyosin leads to a complete loss of the actin-activated ATPase activity. It is suggested that the Ca-dependent phosphorylation of the light chain via the light chain kinase represents the initial step in the activation of myosin that leads to contraction. Relaxation is probably effected by an as yet uncharacterised light chain phosphatase.  相似文献   

9.
Incubation of bovine aortic native actomyosin with cyclic AMP and bovine aortic cyclic AMP-dependent protein kinase produced a rightward shift in the relation between free Ca2+ and both superprecipitation and actomyosin ATPase activity. The relation between free Ca2+ and phosphorylation of myosin light chains was also shifted to the right. The concentration of free Ca2+ required for half-maximal activation of both ATPase activity and myosin light chain phosphorylation was approximately 1.0 microM for control actomyosin and 2.5 microM for actomyosin incubated with cyclic AMP-protein kinase. Neither basal nor maximal activities were significantly affected by incubation with cyclic AMP-protein kinase. Addition of e microM calmodulin to cyclic AMP-protein kinase-treated actomyosin relieved inhibition of both superprecipitation and myosin light chain phosphorylation. These findings suggest that cyclic AMP-protein kinase-mediated inhibition of actin-myosin interactions in vascular smooth muscle involve a shift in the Ca2+ sensitivity of the system. This shift probably involves Ca2+-calmodulin interactions and the control of phosphorylation of the myosin light chains.  相似文献   

10.
Activation of myosin light chain kinase is a prerequisite for smooth muscle activation. In this study, short peptide analogs of the phosphorylation site of the myosin light chain were studied for their effects on several contractile protein systems. The peptides inhibited phosphorylation of isolated ventricular and smooth muscle myosin light chains by smooth muscle myosin light chain kinase, but they were only weak inhibitors of phosphorylation of intact myosin and actomyosin. The peptides were also unable to block force development or myosin light chain phosphorylation in glycerol permeabilized fibers of swine carotid media. Apparently, the association of the myosin light chain with myosin changes its conformation such that substrate analogs which are potent inhibitors of the phosphorylation of isolated myosin light chains by myosin light chain kinase are ineffective at blocking phosphorylation of the intact molecule.  相似文献   

11.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

12.
ATP-dependent interactions between myosin and actin in the lower eukaryote, Physarum polycephalum, are inhibited by micromolar levels of Ca2+. This inhibition is mediated by the binding of Ca2+ to myosin, the phosphorylation of which is required if Ca2+ is to inhibit the activities of myosin (Kohama, K., Trends Pharmacol. Sci. 11, 433-435 (1990)). As the first step to examine whether Ca2+ also regulates phosphorylation in the actomyosin system, we purified myosin light chain kinase (MLCK) of 55 kDa almost to homogeneity. The MLCK activity was high whether or not Ca2+ was present. However, a Ca(2+)-dependent inhibitory factor (CIF) purified from Physarum (Okagaki et al., Biochem. Biophys. Res. Commun. 176, 564-570 (1991)) was shown to reduce the MLCK activity in a Ca(2+)-dependent manner. Using crude preparations, not only MLCK but also myosin heavy chain kinase and actin kinase were shown to be inhibited by Ca2+ half-maximally at micromolar levels. Since CIF is the only Ca(2+)-binding protein in the preparations, we propose that this inhibitory Ca(2+)-regulation of the kinases for actomyosin is mediated by CIF.  相似文献   

13.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

14.
Phosphorylation of skeletal muscle glycogen synthase catalyzed by a protein kinase is stimulated up to 10-fold by the calcium-dependent regulator (CDR) protein. Half-maximal stimulation requires about 1 microgram of CDR/ml. Phosphorylation by the CDR-dependent synthase kinase is more rapid at pH 8.6 than at pH 6.8 and is blocked by ethylene glycol bis(beta-aminoethyl-ether)N,N'-tetraacetic acid and trifuloperazine. Approximately 60 to 70% of the phosphate is incorporated into the trypsin-insensitive region of glycogen synthase resulting in conversion of the a form to the b form of the enzyme. The CDR-dependent synthase kinase is not myosin light chain kinase, as this enzyme does not phosphorylate glycogen synthase. Furthermore, synthase phosphorylation by the cAMP-dependent protein kinase catalytic subunit is not affected by CDR. The possibility that CDR-dependent synthase kinase may be phosphorylase kinase is being investigated.  相似文献   

15.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

16.
A protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) which catalyzes the phosphorylation of troponin T, phosvitin and casein has been purified over 2000 fold from rabbit skeletal muscle. The partial purification of this new enzyme, designated troponin T kinase, involves precipitation of contaminating proteins at pH 6.1, fractionation of the supernatant with (NH4)2SO4 and successive column chromatographies on DEAE-cellulose, hydroxyapatite and Sepharose 6B. The chromatographic patterns on DEAE-cellulose and hydroxyapatite columns show two peaks of troponin T kinase activity. Gel filtration experiments indicate the existence of multiple, possibly aggregated, forms of the enzyme. The purified enzyme does not catalyze the phosphorylation of phosphorylase b, troponin I, troponin C, tropomyosin, protamine, or myosin light chain 2 nor does it catalyze the interconversion of glycogen synthase I into the D form. Troponin T kinase is not affected by the addition of cyclic nucleotides or AMP to the reaction mixture. Divalent cations (other than Mg2+, required for the reaction) do not stimulate the enzyme, and several are inhibitory. Other characteristics of the reaction catalyzed by troponin T kinase, such as Km values for ATP and substrate proteins, pH optima, effect of the concentration of Mg2+, substitution of ATP for GTP have also been studied.  相似文献   

17.
To clarify the role of protein kinase C in the mechanical response, the effects of exogenous protein kinase C and its cofactors were investigated on skinned smooth muscle preparations of the rabbit mesenteric artery. Addition of protein kinase C with 12-O-tetradecanoylphorbol-13-acetate (TPA) and phosphatidylserine (PS) caused slow inactivation of a maximal Ca2+ contraction of the muscle fiber and correspondingly increased protein kinase C phosphorylation of myosin light chain. Neither protein kinase C nor enzyme cofactors (PS and TPA) produced relaxation of this tissue and all three components caused significant relaxation. Furthermore, when the muscle fiber was activated by Ca2+-insensitive fragment of MLC-kinase, addition of protein kinase C with PS and TPA decreased the tension and increased protein kinase C phosphorylation of myosin light chain. This evidence suggests that protein kinase C phosphorylation of myosin light chain may play an inhibitory role in the contraction of vascular smooth muscle.  相似文献   

18.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

19.
A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin.  相似文献   

20.
Reorganization of actomyosin is an essential process for cell migration and myosin regulatory light chain (MLC20) phosphorylation plays a key role in this process. Here, we found that zipper-interacting protein (ZIP) kinase plays a predominant role in myosin II phosphorylation in mammalian fibroblasts. Using two phosphorylation site-specific antibodies, we demonstrated that a significant portion of the phosphorylated MLC20 is diphosphorylated and that the localization of mono- and diphosphorylated myosin is different from each other. The kinase responsible for the phosphorylation was ZIP kinase because (a) the kinase in the cell extracts phosphorylated Ser19 and Thr18 of MLC20 with similar potency; (b) immunodepletion of ZIP kinase from the cell extracts markedly diminished its myosin II kinase activity; and (c) disruption of ZIP kinase expression by RNA interference diminished myosin phosphorylation, and resulted in the defect of cell polarity and migration efficiency. These results suggest that ZIP kinase is critical for myosin phosphorylation and necessary for cell motile processes in mammalian fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号