首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbamate kinase from Streptococcus faecalis is inactivated by butanedione in borate buffer, which implies the presence of an essential arginine at the active site of the enzyme. The inactivation reaction is first order in [butanedione] and a replot of the inactivation rate data infers that one arginine is modified. The enzyme is protected against inactivation by ADP, ATP, the metal-nucleotides and carbamyl phosphate but not by carbamate. Amino acid analyses reveal that one of three arginines is modified by butanedione in the absence of protecting agents, and the binding of ADP to the enzyme prevents modification. Thus, analysis of the data suggest that (i) substrate binding to arginine and (ii) protein conformational changes at the active site are responsible for protection of an essential arginine against modification by butanedione.  相似文献   

2.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

3.
M S Rohrbach  J W Bodley 《Biochemistry》1977,16(7):1360-1363
Treatment of Escherichia coli elongation factor G with the arginine reagent, 2,3-butanedione, leads to the inactivation of the enzyme when performed in sodium borate buffers. The inhibition follows pseudo-first-order kinetics until 95% of the activity has been lost and further incubation results in complete inhibiton. Removal of the borate by exhaustive dialysis results in the restoration of approximately 85% of the original activity. The pH dependence of the reaction suggests that the ionization of a group in the protein with a pKa of approximately 8.8 facilitates the reaction with butanedione. A reaction order of 1.01 +/- 0.13 was calculated for the inhibition reaction, indicating that the incorporation of one butanedione per elongation factor G results in the inactivation of the enzyme. The kinetics of inhibition in the presence of GTP indicate that the elongation factor G-GTP complex is refractory to butanedione inhibiton. Elongation factor G which has been partially inactivated by butanedione has the same apparent Km for GTP as does the native enzyme. These results indicate that elongation factor G contains only one essential arginine residue which is reactive with butanedione and that this residue is located at its nucleotide binding site.  相似文献   

4.
Modification of ferredoxin-NADP+ reductase from the alga Bumilleriopsis with butanedione (diacetyl) and dansyl chloride results in loss of enzymatic activity. Under pseudo-first order conditions the rate of inactivation by butanedione is directly proportional to the concentration of the modifying reagent with a slope of unity. The protective effect of pyridine nucleotides, as well as their analogs against inactivation by butanedione indicates involvement of arginine in the binding of pyridine nucleotides at the active site. Inactivation by dansyl chloride suggests that a further amino acid is involved, possibly lysine. Amino acid analyses of the butanedione-treated reductase show that the degree of inactivation correlates well with the decrease in arginine. Furthermore, two arginine residues are modified concomitant with complete inactivation of the enzyme, although this does not imply that both residues participate necessarily in the binding of pyridine nucleotides. Fingerprint analysis of the carboxymethylated, trypsin-digested enzyme indicates loss of one arginine-containing peptide when the protein had been modified by butanedione. There was no change in cysteine-containing peptides.  相似文献   

5.
Mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart exhibits a time dependent loss in enzymatic activity in the presence of the reagent butanedione. The inhibition occurs concomitant with the modification of 2.4 residues of arginine per molecular weight of 70,000. The presence of the reduced coenzyme, NADH, protects the enzyme from inhibition by butanedione and from modification of arginine residues, suggesting that the residues modified are located near the coenzyme binding site and hence at or near the enzymatic active center of this enzyme.  相似文献   

6.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

7.
Purified NAD-malic enzyme from Ascaris suum is rapidly inactivated by the arginine reagent, 2,3-butanedione, and this inactivation is facilitated by 30 mM borate. Determination of the inactivation rate as a function of butanedione concentration suggests a second-order process overall, which is first order in butanedione. A second-order rate constant of 0.6 M-1 s-1 at pH 9 is obtained for the butanedione reaction. The inactivation is reversed by removal of the excess reagent upon dialysis. The enzyme is protected against inactivation by saturating amounts of malate in the presence and absence of borate. The divalent metal Mg2+ affords protection in the presence of borate but has no effect in its absence. The nucleotide reactant NAD+ has no effect on the inactivation rate in either the presence or absence of borate. A dissociation constant of 24 mM is obtained for E:malate from the decrease in the inactivation rate as a function of malate concentration. An apparent Ki of 0.5 mM is obtained for oxalate (an inhibitor competitive vs malate) from E:Mg:oxalate while no significant binding is observed for oxalate using the butanedione modified enzyme. The pH dependence of the first-order rate of inactivation by butanedione gives a pKa of 9.4 +/- 0.1 for the residue(s) modified, and this pK is increased when NAD is bound. The arginine(s) modified is implicated in the binding of malate.  相似文献   

8.
1. A membrane vesicle fraction containing a high (K+ + H+)-ATPase activity was isolated from porcine gastric mucosa. The enzyme has a pH optimum of 7.0 and is stimulated by T1+, K+, Rb+ and NH4+ with KA values of 0.13, 2.7, 7.6 and 26 mM, respectively, at this pH. 2. Incubation of the isolated membrane fraction with butanedione leads to inactivation of the (K+ + H+)-ATPase activity. The pH-dependence of the (K+ + H+)-ATPase activity. The pH-dependence of the inactivation and the reversibility of the reaction, observed after removal of excess butanedione and borate, indicate that modification of arginine is involved. 3. The inactivation of (K+ + H+)-ATPase activity by butanedione is time-dependent and follows second-order kinetics. From the dependence of the inactivation rate on the reagent concentration it appears that a single arginine residue is involved in the inactivation of the (K+ + H+)-ATPase activity. 4. ATP, deoxy-ATP, ADP and adenylyl imidodiphosphate (AMPPNP), but not CTP, GTP and ITP which are poor substrates, protect the enzyme against butanedione inactivation, suggesting that the essential arginine residue is located in the ATP binding centre. 5. In the presence of Mg2+ the butanedione inactivation is increased, and the protection by ATP, deoxy-ATP and ADP (but not that by AMPPNP) is less pronounced. This suggests that Mg2+ induces a conformational change in the enzyme, exposing the arginine group and coinciding with phosphorylation and subsequent release of ADP from its binding site.  相似文献   

9.
Dimethyl sulfoxide (DMSO) stimulates tyrosine phosphorylation of the hepatic EGF receptor in isolated membrane preparations. To determine whether DMSO affects EGF binding, primary cultures of rat hepatocytes were incubated with 1-10% DMSO for 30 min prior to the addition of 125I-EGF. DMSO (1-2%) reduced specific 125I-EGF binding; the effect was maximal (a 40-60% reduction) at 5-7.5% DMSO and was reversed by removing the DMSO. Scatchard analysis showed that the reduction in binding was due to a change in receptor affinity. The decrease in binding was not seen when other, slightly less polar, solvents (eg, acetone and ethanol) were tested. DMSO also reduced 125I-EGF binding to purified rat liver plasma membranes. This reduction was seen in the absence of added ATP and in membranes that had been pretreated with TLCK, a tyrosine kinase inhibitor. Thus, completion of the receptor autophosphorylation reaction was not necessary to effect the change. The data are consistent with a DMSO-induced alteration of receptor conformation that reversibly reduces receptor affinity.  相似文献   

10.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

11.
Neutral endopeptidase (EC 3.4.24.11, NEP) is a Zn-metallopeptidase involved in the degradation of biologically active peptides, notably the enkephalins and atrial natriuretic peptide. Recently, the structure of the active site of this enzyme has been probed by site-directed mutagenesis, and 4 amino acid residues have been identified, namely 2 histidines (His583 and His587), which act as zinc-binding ligands, a glutamate (Glu584) involved in catalysis, and an arginine residue (Arg102), suggested to participate in substrate binding. Site-directed mutagenesis has now been used to investigate the role of 4 other arginine residues (Arg408, Arg409, Arg659, and Arg747) that have been proposed as possible active site residues and to further analyze the role of Arg102. In each case, the arginine was replaced with a methionine, and both enzymatic activity and the IC50 values of several NEP inhibitors were measured for the mutated enzymes and compared to wild-type enzyme. The results suggest that 2 arginines, Arg102 and Arg747, could both be important for substrate and inhibitor binding. Arg747 seems to be positioned to interact with the carbonyl amide group of the P'1 residue and can be modified when the enzyme is treated with the arginine-specific reagents phenylglyoxal and butanedione. Arg102 could be positioned to interact with the free carboxyl group of a P'2 residue in some substrates and inhibitors and can be modified by phenylglyoxal but not by butanedione. The results could explain the dual dipeptidylcarboxypeptidase and endopeptidase nature of NEP.  相似文献   

12.
Human erythrocyte pyruvate kinase was found to be irreversibly inactivated by butanedione in the dark. The second-order rate constants for inactivation at pH 8.0 and 25 degrees C were 2.14 and 2.74 M-1 min-1 in the absence and presence of 50 mM borate, respectively. The pH profile of the inactivation indicated the involvement of a residue with an apparent pK alpha of 8.1-8.3. ADP and phosphoenolpyruvate acted as partial inhibitors of the inactivation process. Certain details of the inactivation, spectral studies, and fluorometric determinations gave evidence for arginine as the only target residue. A total of 23 +/- 3 residues per subunit were modified within the period required for inactivation. In the same period the presence of 4 mM ADP reduced the extent of inactivation by 70% and the number of modified residues to 18 +/- 4. The number of the arginine residues protected by ADP from butanedione modification was 5.0 +/- 1.3 per subunit.  相似文献   

13.
Modification of arginine residues with 2,3-butanedione inhibits the carboxylic-ester hydrolase activity on soluble and emulsified substrates when assayed with bile salts. The alpha-dicarbonyl reagent modifies seven of the nineteen arginine residues present per enzyme molecule. Nevertheless the inactivation with butanedione is greatly diminished when the protein is in the presence of negatively charged micellar bile salt. In these conditions we observe the protection of one arginine residue by sodium taurodeoxycholate and of two arginine residues by sodium cholate. This suggests that the carboxylic-ester hydrolase from human pancreatic juice contains at least two arginine residues essential for the activation by bile salts. All our data confirm the presence of two bile-salt-binding sites on the enzyme in which one arginine per site is involved and plays the general role of an anionic binding site. This study provides evidence that arginine residues may play an essential role in the interaction between bile salts and protein.  相似文献   

14.
The effect of the arginine-specific reagents phenylglyoxal and butanedione on the activity of neutral endopeptidase 24.11 ("enkephalinase") was determined. Inactivation of the enzyme by butanedione is completely protected by methionine-enkephalin, but only partially protected by methionine-enkephalinamide. In contrast, phenylglyoxal inactivation of the enzyme exhibits saturation kinetics with a Kd of 20 mM. The enzyme is only partially protected against phenylglyoxal inactivation by both methionine-enkephalin and its amide, indicating that phenylglyoxal reacts at two sites. Reaction of the enzyme with phenylglyoxal in the presence of saturating methionine-enkephalin involves the direct reaction of the reagent with the enzyme-substrate complex. Enzyme treated with butanedione or with phenylglyoxal (at site 1) exhibits a 3-5 decrease in substrate binding with little change in kcat. In contrast, reaction with phenylglyoxal in the presence of saturating methionine-enkephalin shows little change in substrate binding but a 4-fold decrease in kcat. Enzyme inactivation involves the incorporation of approximately 1 mol of phenylglyoxal/enzyme subunit in the absence of methionine-enkephalin and approximately 2.5 mol of phenylglyoxal/enzyme subunit in the presence of saturating methionine-enkephalin. These results suggest that an arginine residue on the enzyme is involved in substrate binding.  相似文献   

15.
Summary Partially purifiedD-aspartate oxidase from beef kidney has been tested in the presence of butanedione or phenylglyoxal, which specifically modify the arginine molecule. The results obtained clearly indicate that arginine residues are involved in the binding of the substrate to the active site of the enzyme.  相似文献   

16.
Rabbit muscle phosphoglucose isomerase was modified with phenylglyoxal or 2,3-butanedione, the reaction with either reagent resulting in loss of enzymatic activity in a biphasic mode. At slightly alkaline pH butanedione was found to be approximately six times as effective as phenylglyoxal. The inactivation process could not be significantly reversed by removal of the modifier. Competitive inhibitors of the enzyme protected partially against loss of enzyme activity by either modification. The only kind of amino acid residue affected was arginine. However, more than one arginine residue per enzyme subunit was found to be susceptible to modification by the dicarbonyl reagents. From protection experiments it was concluded (i) that both modifiers react specifically with an arginine in the phosphoglucose isomerase active site and nonspecifically with one or more arginine residues elsewhere in the enzyme molecule, (ii) that modification at either loci causes loss of catalytic activity, and (iii) that butanedione has a higher preference for active site arginine than for arginine residues outside of the catalytic center whereas the opposite is true for phenylglyoxal.  相似文献   

17.
Treatment of either crude or purified preparations of the gamma-aminobutyrate (GABA)/benzodiazepine receptor complex with arginine-specific reagents resulted in a time- and concentration-dependent loss of [3H]muscimol binding activity. Following exposure to either 2,3-butanedione or phenylglyoxal (less than or equal to 20 mM), [3H]muscimol binding was inhibited by up to 80%. [3H]Flunitrazepam binding was much less sensitive to the effects of the reagents. Scatchard analysis of the binding data indicated that treatment with butanedione resulted in a loss of [3H]muscimol binding sites with little effect on binding affinity. Considerable protection against inactivation was provided by arginine and by the endogenous receptor ligand, GABA. These results indicate that arginine residues play a critical role in maintaining the GABA receptor in a conformation capable of ligand binding, possibly by participating in the binding site through interaction with the carboxylate moiety of GABA.  相似文献   

18.
Phagocytosis of collagen fibrils by fibroblasts is an important pathway for degradation of extracellular matrix in mature connective tissues. To study regulatory mechanisms in phagocytosis, 2-μm fluorescent beads coated with either collagen (COL) or bovine serum albumin (BSA) were incubated with human gingival fibroblasts in vitro. For these studies single cell suspensions were prepared by trypsinization, and bead internalization and collagen receptor expression were assessed by flow cytometry. After 3-h incubations, up to 8-fold more cells internalized COL beads than BSA-coated beads. Increased collagen coating concentration was associated with elevated proportions of cells that internalized COL beads, and was observed also in the presence of competing fibronectin-coated beads. The number of beads per cell and the percent of phagocytic cells increased proportionally with higher bead loadings. At > 4 beads per cell a maximum of ∼︁80% of cells were phagocytic. Cells reacted with mAbs against the α1, α2, and α3 integrin subunits were, respectively, 5%, 98% and 93% positively stained above background controls. All cells that internalized COL beads exhibited α2 staining but there were large proportions of phagocytic cells that were not stained for α1. In unfixed cells, bead internalization caused an immediate reduction of surface staining of membrane-bound α2 by ∼︁55% which returned to control levels within 3 h, indicating that cell-surface α2 was internalized by phagocytosis. Preincubation of cells with up to 8 COL beads per cell reduced the proportion of phagocytic cells and the number of internalized beads after a second COL bead incubation 4 h later. To assess the relationship between the percent of phagocytic cells and α2 integrin levels, serum starvation and cycloheximide experiments were conducted. Compared to controls, serum starvation for 24 h induced a 3.2-fold increase of cells internalizing COL beads but did not alter α2 staining levels. In contrast, 3 h cycloheximide treatment reduced α2 staining to 60% of control levels and this treatment also inhibited COL bead internalization. GRGDTP peptide as well as mAbs against the α1 and α2 subunits significantly reduced internalization of COL beads by 1.8 to 2.6-fold, whereas GRGESP peptide and α3 mAb exerted no effect. Internalization of BSA beads was not affected by any of these treatments. Collectively, these data indicate that the α2 integrin, along with other, as yet unidentified components, is likely involved in COL bead internalization. The α2 integrin subunit is rapidly recycled or synthesized following a phagocytic load. In contrast, the α1 integrin is not directly required for phagocytosis but may regulate the internalization step. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified.  相似文献   

20.
Aconitase (citrate(isocitrate)hydro-lyase, EC 4.2.1.3) prior to activation demonstrates a single binding site for substrates and inhibitors. On the basis of kinetic experiments, at pH 8.5 and 37 degrees C, with monomeric butanedione in borate, this binding site was found to contain a single arginine residue. Dissociation constants at pH 8.5 and 37 degrees C, determined from inhibitory effects on butanedione inactivation rates are: citrate, 0.74 mM; D-isocitrate, 0.33 mM: cis-aconitate, 0.52 mM; tricarballytate, 0.42 mM; trans-aconitate, 0.025 mM. Corresponding dissociation constants for the active enzyme are: tricarballylate, 0.39 mM; trans-aconitate, 0.14 mM. Active site Fe2+ added to the enzyme on activation is therefore not required for binding. Km values are: citrate, 0.23 mM and cis-aconitate 0.012 mM. Binding to active enzyme is considered to be transition state binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号