首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study analyzes the differential characteristics of the Na(+)-H+ antiport systems observed in several epithelial and non-epithelial renal cell lines. Confluent monolayers of LLC-PK1A cells have a Na(+)-H+ antiport system located in the apical membrane of the cell. This system, however, is not expressed during cell proliferation or after incubation in the presence of different mitogenic agents. In contrast, confluent monolayers of MDCK4 express minimal Na(+)-H+ antiport activity in the confluent monolayer state but reach maximal antiport activity during cell proliferation or after activation of the cells by different mitogenic agents. Similar results were obtained with the renal fibroblastic cell line BHK. The system present in MDCK4 cells is localized in the basolateral membrane of the epithelial cell. In LLC-PK1A cells, an increase in the extracellular Na+ concentration produces a hyperbolic increase in the activity of the Na(+)-H+ antiporter. In MDCK4 and BHK cells, however, an increase in external Na+ produces a sigmoid activation of the system. Maximal activation of the system occur at a pHo 7.5 in LLC-PK1A cells and pHo 7.0 in MDCK4 cells. The Na(+)-H+ antiporter of LLC-PK1A cells is more sensitive to the inhibitory effect of amiloride (Ki 1.8 x 10(-7) M) than is the antiporter of MDCK4 cells (Ki 7.0 x 10(-6) M). Moreover, 5-(N-methyl-N-isobutyl)amiloride is the most effective inhibitor of Na(+)-H+ exchange in LLC-PK1A cells, but the least effective inhibitor in MDCK4 cells. Conversely, the analog, 5-(N,N-dimethyl)amiloride, is the most effective inhibitor of Na(+)-H+ exchange in MDCK4 cells, but is the least effective inhibitor in LLC-PK1A cells. These results support the hypothesis that Na(+)-H+ exchange observed in LLC-PK1A and other cell lines may represent the activity of different Na(+)-H+ antiporters.  相似文献   

3.
Properties of the Na+/H+ exchange system in synaptosomes have been studied primarily by using acridine orange fluorescence to follow H+ efflux. Results obtained from 22Na+ uptake experiments and [3H]ethylpropylamiloride binding experiments are also presented for comparison. The basal properties of the Na+/H+ antiport in synaptosomes are similar to those found in other systems; (i) the stoichiometry of Na+/H+ exchange is 1:1; (ii) Li+ can be successfully substituted for Na+; its affinity for the exchanger (KLi+ = 3 mM) is higher than that of Na+ (KNa+ = 12 mM), but the maximal rate of H+ efflux in the presence of Li+ is about 3 times lower than the maximal rate of H+ efflux in the presence of Na+; and (iii) the Na+/H+ antiport is inhibited by amiloride derivatives with the rank order:ethylisopropylamiloride greater than ethylpropylamiloride greater than amiloride greater than benzamil. The most important finding of this paper is that the external pH dependence of the synaptosomal Na+/H+ antiport is controlled by the value of internal pH and vice versa. For example apparent pHo values for half-maximum activation of the Na+/H+ exchanger are pHo = 7.12 when pHi = 6.4 and pHo = 7.95 when pHi = 7.3. Therefore, a 0.9 pH unit increase in internal pH produces a shift of at least a 0.83 pH unit in the external pH dependence. In addition, changing pHo from 7.75 to 8.50 also shifts the half-maximum pHi value for activation of the Na+/H+ antiport from 6.67 to 7.54.  相似文献   

4.
Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian antiporters, we used the whole-cell patch clamp technique combined with microfluorimetric measurements of intracellular pH (pHi). In murine macrophages, which were found by RT- PCR to express the NHE-1 isoform of the antiporter, reverse (intracellular Na(+)-driven) Na+/H+ exchange caused a cytosolic acidification and activated an outward current, whereas forward (extracellular Na(+)-driven) exchange produced a cytosolic alkalinization and reduced a basal outward current. The currents mirrored the changes in pHi, were strictly dependent on the presence of a Na+ gradient and were reversibly blocked by amiloride. However, the currents were seemingly not carried by the Na+/H+ exchanger itself, but were instead due to a shift in the voltage dependence of a preexisting H+ conductance. This was supported by measurements of the reversal potential (Erev) of tail currents, which identified H+ (equivalents) as the charge carrier. During Na+/H+ exchange, Erev changed along with the measured changes in pHi (by 60-69 mV/pH). Moreover, the current and Na+/H+ exchange could be dissociated. Zn2+, which inhibits the H+ conductance, reversibly blocked the currents without altering Na+/H+ exchange. In Chinese hamster ovary (CHO) cells, which lack the H+ conductance, Na+/H+ exchange produced pHi changes that were not accompanied by transmembrane currents. Similar results were obtained in CHO cells transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, indicating that exchange through these isoforms is electroneutral. In all the isoforms tested, the amplitude and time- course of the antiport-induced pHi changes were independent of the holding voltage. We conclude that mammalian NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed with a pH- sensitive H+ conductance, such as macrophages, activation of Na(+)-H+ exchange can modulate a transmembrane H+ current. The currents reported in turtle colon might be due to a similar "cross-talk" between the antiporter and a H+ conductance.  相似文献   

5.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other.  相似文献   

6.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

7.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

8.
The properties of the Na+/H+ exchange system in the glial cell lines C6 and NN were studied from 22Na+ uptake experiments and measurements of the internal pH (pHi) using intracellularly trapped biscarboxyethyl-carboxyfluorescein. In both cell types, the Na+/H+ exchanger is the major mechanism by which cells recover their pHi after an intracellular acidification. The exchanger is inhibited by amiloride and its derivatives. The pharmacological profile (ethylisopropylamiloride greater than amiloride greater than benzamil) is identical for the two cell lines. Both Na+ and Li+ can be exchanged for H+. Increasing the external pH increases the activity of the exchanger in the two cell lines. In NN cells the external pH dependence of the exchanger is independent of the pHi. In contrast, in C6 cells, changing the pHi value from 7.0 to 6.5 produces a pH shift of 0.6 pH units in the external pH dependence of the exchanger in the acidic range. Decreasing pHi activates the Na+/H+ exchanger in both cell lines. Increasing the osmolarity of the external medium with mannitol produces an activation of the exchanger in C6 cells, which leads to a cell alkalinization. Mannitol action on 22Na+ uptake and the pHi were not observed in the presence of amiloride derivatives. Mannitol produces a modification of the properties of interaction of the antiport with both internal and external H+. It shifts the pHi dependence of the system to the alkaline range and the external pH (pHo) dependence to the acidic range. It also suppresses the interdependence of pHi and pHo controls of the exchanger's activity. NN cells that possess an Na+/H+ exchange system with different properties do not respond to mannitol by an increased activity of the Na+/H+ exchanger. The action of mannitol on C6 cells is unlikely to be mediated by an activation of protein kinase C.  相似文献   

9.
Voltage-activated H+ currents were studied in rat alveolar epithelial cells using tight-seal whole-cell voltage clamp recording and highly buffered, EGTA-containing solutions. Under these conditions, the tail current reversal potential, Vrev, was close to the Nernst potential, EH, varying 52 mV/U pH over four delta pH units (delta pH = pHo - pHi). This result indicates that H+ channels are extremely selective, PH/PTMA > 10(7), and that both internal and external pH, pHi, and pHo, were well controlled. The H+ current amplitude was practically constant at any fixed delta pH, in spite of up to 100-fold symmetrical changes in H+ concentration. Thus, the rate-limiting step in H+ permeation is pH independent, must be localized to the channel (entry, permeation, or exit), and is not bulk diffusion limitation. The instantaneous current- voltage relationship exhibited distinct outward rectification at symmetrical pH, suggesting asymmetry in the permeation pathway. Sigmoid activation kinetics and biexponential decay of tail currents near threshold potentials indicate that H+ channels pass through at least two closed states before opening. The steady state H+ conductance, gH, as well as activation and deactivation kinetic parameters were all shifted along the voltage axis by approximately 40 mV/U pH by changes in pHi or pHo, with the exception of the fast component of tail currents which was shifted less if at all. The threshold potential at which H+ currents were detectably activated can be described empirically as approximately 20-40(pHo-pHi) mV. If internal and external protons regulate the voltage dependence of gH gating at separate sites, then they must be equally effective. A simpler interpretation is that gating is controlled by the pH gradient, delta pH. We propose a simple general model to account for the observed delta pH dependence. Protonation at an externally accessible site stabilizes the closed channel conformation. Deprotonation of this site permits a conformational change resulting in the appearance of a protonation site, possibly the same one, which is accessible via the internal solution. Protonation of the internal site stabilizes the open conformation of the channel. In summary, within the physiological range of pH, the voltage dependence of H+ channel gating depends on delta pH and not on the absolute pH.  相似文献   

10.
Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na+/H+ antiporter and Na+/HCO3- cotransporter are located primarily on the BE cell surface.  相似文献   

11.
Net H+ fluxes across the plasma membrane of Chinese hamster lung fibroblasts (CC139) were monitored by pH-stat titration. Na+-depleted cells release H+ upon addition of Na+. Conversely Na+- or Li+-loaded cells take up H+ from the medium when shifted to a Na+,Li+-free medium. This reversible Na+ (or Li+)-dependent H+ flux is inhibited by amiloride and does not occur in digitonin-permeabilized cells. A similar Na+/H+ exchanger was identified in vascular smooth muscle cells, corneal and aortic endothelial cells, lens epithelial cells of bovine origin, and human platelets. Kinetic studies carried out with CC139 cells indicate the following properties: 1) half-saturation of the system is observed at pH = 7.8, in the absence of Na+; 2) external Na+ stimulates H+ release and inhibits H+ uptake in a competitive manner (Ki = 2-3 mM); 3) amiloride is a competitive inhibitor for Na+ (Ki congruent to 1 microM) and a noncompetitive inhibitor for H+; 4) a coupling ratio of 1.3 +/- 0.3 for the H+/Li+ exchange suggests a stoichiometry of 1:1. We conclude that CC139 cells possess in their plasma membrane a reversible, electroneutral, and amiloride-sensitive Na+/H+ antiporter, with two distinct and mutually exclusive binding sites for Na+ and H+. The rapid stimulation of the Na+/H+ antiporter in G0/G1-arrested CC139 cells upon addition of growth factors, together with the fact that intracellular H+ concentration is, under physiological conditions, around the apparent K0.5 of the system, strongly suggests a key role of this antiport in pHi regulation and mitogen action.  相似文献   

12.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

13.
Regulation of intracellular pH (pHi) in single cultured rat hippocampal neurons was investigated using the fluorescent pHi indicator dye bis-carboxyethylcarboxyfluorescein. Resting pHi was dependent on the presence of bicarbonate and external Na+ but was not altered significantly by removal of Cl- or treatment with the anion exchange inhibitor diisothiocyanatostilbene-2,2'-disulfonate. Recovery of pHi from acute acid loading was due, in large part, to a pharmacologically distinct variant of the Na+/H+ antiporter. In nominally HCO3(-)-free solutions, this recovery exhibited a saturable dose dependence on extracellular Na+ (Km = 23-26 mM) or Li+. The antiporter was activated by decreasing pHi and was unaffected by collapse of the membrane potential with valinomycin. Like the Na+/H+ antiporter described in other cell systems, the hippocampal activity was inhibited by harmaline, but in sharp contrast, neither amiloride nor its more potent 5-amino-substituted analogues were able to prevent the recovery from an acid load. These data indicate that Na(+)-dependent mechanisms dominate pHi regulation in hippocampal neurons and suggest a role for a novel variant of the Na+/H+ antiporter.  相似文献   

14.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

15.
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i- regulatory mechanism.  相似文献   

16.
Voltage-gated proton channels were studied under voltage clamp in excised, inside-out patches of human eosinophils, at various pHi with pHo 7.5 or 6.5 pipette solutions. H+ current fluctuations were observed consistently when the membrane was depolarized to voltages that activated H+ current. At pHi < or = 5.5 the variance increased nonmonotonically with depolarization to a maximum near the midpoint of the H+ conductance-voltage relationship, gH-V, and then decreased, supporting the idea that the noise is generated by H+ channel gating. Power spectral analysis indicated Lorentzian and 1/f components, both related to H+ currents. Unitary H+ current amplitude was estimated from stationary or quasi-stationary variance, sigmaH2. We analyze sigmaH2 data obtained at various voltages on a linearized plot that provides estimates of both unitary conductance and the number of channels in the patch, without requiring knowledge of open probability. The unitary conductance averaged 38 fS at pHi 6.5, and increased nearly fourfold to 140 fS at pHi 5.5, but was independent of pHo. In contrast, the macroscopic gH was only 1.8-fold larger at pHi 5.5 than at pHi 6.5. The maximum H+ channel open probability during large depolarizations was 0.75 at pHi 6.5 and 0.95 at pHi 5.5. Because the unitary conductance increases at lower pHi more than the macroscopic gH, the number of functional channels must decrease. Single H+ channel currents were too small to record directly at physiological pH, but at pHi < or = 5.5 near Vthreshold (the voltage at which gH turns on), single channel-like current events were observed with amplitudes 7-16 fA.  相似文献   

17.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

18.
A gene encoding a Li(+) extrusion system was cloned from the chromosomal DNA of Pseudomonas aeruginosa and expressed in Escherichia coli cells. The gene enabled growth of E. coli KNabc cells, which were unable to grow in the presence of 10 mM LiCl or 0.1 M NaCl because of the lack of major Na(+) (Li(+))/H(+) antiporters. We detected Li(+)/H(+) and Na(+)/H(+) antiport activities in membrane vesicles prepared from E. coli KNabc cells that harbored a plasmid carrying the cloned gene. Activity of this antiporter was pH-dependent with an optimal pH activity between pH 7.5 and 8.5. These properties indicate that this antiporter is different from NhaP, an Na(+)/H(+) antiporter from P. aeruginosa that we reported previously, and that is rather specific to Na(+) but it cannot extrude Li(+) effectively. The gene was sequenced and an open reading frame (ORF) was identified. The amino acid sequence deduced from the ORF showed homology (about 60% identity and 90% similarity) with that of the NhaB Na(+)/H(+) antiporters of E. coli and Vibrio parahaemolyticus. Thus, we designated the antiporter as NhaB of P. aeruginosa. E. coli KNabc carrying the nhaB gene from P. aeruginosa was able to grow in the presence of 10 to 50 mM LiCl, although KNabc carrying nhaP was unable to grow in these conditions. The antiport activity of NhaB from P. aeruginosa was produced in E. coli and showed apparent Km values for Li(+) and Na(+) of 2.0 mM and 1.3 mM, respectively. The antiport activity was inhibited by amiloride with a Ki value for Li(+) and Na(+) of 0.03 mM and 0.04 mM, respectively.  相似文献   

19.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

20.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号