首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Summary Three monkey kidney cell lines and primary chicken embryo cells were grown in microcarrier culture. The carrier support was DEAE-Sephadex gel beads at low anion exchange capacity prepared according to a protocol developed at the Massachusetts Institute of Technology. The growth rate of the cells and the final cell density in microcarrier culture was dependent on the concentration of the beads in culture and on the size of the initial cell inoculum. A bead concentration of 1.0 to 2.0 mg of beads/ml of tissue culture medium and a cell inoculum of 20,000 cells/cm2 of bead surface appeared to be optimal. The efficiency of the microcarrier culture system was compared to that of stationary and roller bottle cultures. Stationary flasks gave cell densities about twofold higher than maximal densities in roller bottles and about threefold and twofold higher than cell densities in microcarrier culture at a bead concentration of 2.5 and 1.0 mg/ml, respectively. In terms of cell yield per millitier of tissue culture medium, the microcarrier culture was superior to roller bottle and stationary cultures. An advantage of the microcarrier culture system is its suitability for a scale up into large volume production units.  相似文献   

2.
Summary A new type of microcarrier was described using bead emulsion-polymerization techniques. An aqueous solution of gelatin and glutaraldehyde was dispersed in a hydrophobic phase of mineral oil, using Triton X-114 as an emulsifier, and polymerization was initiated. The resultant spherical beads, composed entirely of gelatin, showed excellent mechanical stability to ethanol drying, sterilization, and long-term use in microcarrier spinner cultures. The solid gelatin microcarriers supported the growth of L-929 fibroblast, swine aorta endothelial, human umbilical endothelial, and HeLa-S3 cultures with no adverse effects on cell morphology or growth. The beads were transparent in growth medium and attached cells were clearly visualized without staining. The beads were also compatible with techniques for scanning electron microscopy. Collagenase could be used to entirely digest the gelatin beads, leaving the cells free from microcarriers and suspended in solution while retaining 98% cell viability. The results further showed that after collagenase treatment the cells would populate fresh gelatin microcarriers and grow to confluence. Cell attachment kinetics revealed that the endothelial cells attached to the gelatin beads at the same rate as to tissue culture plates, whereas the fibroblast cells attached to the beads more slowly. However, once the fibroblast cells were attached to the gelatin microcarriers they spread and grew normally. This research was supported in part by the National Institutes of Health (GN 29127) and Ventrex Laboratories, Portland, Maine.  相似文献   

3.
Cell growth optimization in microcarrier culture   总被引:1,自引:0,他引:1  
B Mered  P Albrecht  H E Hopps 《In vitro》1980,16(10):859-865
Three monkey kidney cell lines and primary chicken embryo cells were grown in microcarrier culture. The carrier support was DEAE-Sephandex gel beads at low anion exchange capacity prepared according to a protocol developed at the Massachusetts Institute of Technology. The growth rate of the cells and the final cell density in microcarrier culture was dependent on the concentration of the beads in culture and on the size of the initial cell inoculum. A bead concentration of 1.0 to 2.0 mg of beads/ml of tissue culture medium and a cell inoculum of 20,000 cells/cm2 of bead surface appeared to be optimal. The efficiency of the microcarrier culture system was compared to that of stationary and roller bottle cultures. Stationary flasks gave cell densities about twofold higher than maximal densities in roller bottles and about threefold and twofold higher than cell densities in microcarrier culture at a bead concentration of 2.5 and 1.0 mg/ml, respectively. In terms of cell yield per milliliter of tissue culture medium, the microcarrier culture was superior to roller bottle and stationary cultures. An advantage of the microcarrier culture system is its suitability for scale up into large volume production units.  相似文献   

4.
Rotating-wall vessels are beneficial to tissue engineering in that the reconstituted tissue formed in these low-shear bioreactors undergoes extensive three-dimensional growth and differentiation. In the present study, bovine corneal endothelial (BCE) cells were grown in a high-aspect rotating-wall vessel (HARV) attached to collagen-coated Cytodex-3 beads as a representative monolayer culture to investigate factors during HARV cultivation which affect three-dimensional growth and protein expression. A collagen type I substratum in T-flask control cultures increased cell density of BCE cells at confluence by 40% and altered the expression of select proteins (43, 50 and 210 kDa). The low-shear environment in the HARV facilitated cell bridging between microcarrier beads to form aggregates containing upwards of 23 beads each, but it did not promote multilayer growth. A kinetic model of microcarrier aggregation was developed which indicates that the rate of aggregation between a single bead and an aggregate was nearly 10 times faster than between two aggregate and 60 times faster than between two single beads. These differences reflect changes in collision frequency and cell bridge formation. HARV cultivation altered the expression of cellular proteins (43 and 70 kDa) and matrix proteins (50, 73, 89 and 210 kDa) relative to controls perhaps due to hypoxia, fluid flow or distortion of cell shape. In addition to the insight that this work has provided into rotating-wall vessels, it could be useful in modeling aggregation in other cell systems, propagating human corneal endothelial cells for eye surgery and examining the response of endothelial cells to reduced shear.  相似文献   

5.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

6.
Summary Cultured endothelial cells have been used in the past as a source of endothelium-derived relaxing factor (EDRF) and of prostacyclin (PGI2). Although cell cultures are essential for observation of prolonged exposure to media or when there is delayed response, they are time consuming and sterile conditions are essential. In the present study, we report that endothelial cells, freshly harvested from bovine aortas, readily attached themselves to cytodex-3 microcarrier beads and released an endothelium-derived relaxing factor (EDRF), prostacyclin (PGI2) and increased the amount of cyclic GMP in vascular smooth muscle. Attachment to microcarrier beads was essential since it increased the surface area and the number of attached cells and permited collection of cell free filtrates because of the formation of dense networks of cells and beads. As a result superfusion of cells and beads on the filter did not dislodge bound cells which remain on the filter. Conditioned filtrates from freshly harvested endothelial cells attached to microcarrier beads caused marked relaxation of endothelium-deprived bovine pulmonary artery strips. The degree of relaxation depended on the number of cells; maximal relaxation occurred with 50 million cells at ED50 of 14 million. High values of cyclic GMP were found in vascular smooth muscle exposed to conditioned filtrate. The calcium ionophore A23187 further increased the amount of cyclic GMP. Large amounts of PGI2 were released by freshly harvested endothelial cells particularly after stimulation with the calcium ionophore. In contrast, endothelin production by freshly harvested cells attached to microcarrier beads was barely detectable after 30 min incubation and was beyond the limit of detection by bioassay procedures. Freshly harvested endothelial cells attached to microcarrier beads appear to be a useful adjunct to tissue cultures under specific experimental conditions.Abbreviations EDRF Endothelium-Derived Relaxing Factor - PGI2 Prostacyclin - K-H Krebs-Henseleit solution - cyclic GMP cyclic Guanosine Monophosphate - fmoles femtomoles - IB Ibuprofen  相似文献   

7.
In order to achieve a steady-state primary culture system for mammalian cells, with the potential to eventually correlate and control cell function and growth, a serious evaluation of various suspension systems was made. Calf anterior pituitary cells were employed as a differentiated cell type and successfully cultivated in a microcarrier suspension culture system. DEAE-Sephadex was demonstrated to be a satisfactory type of microcarrier. The cells readily attached to the bead and, after a short lag period, they actively proliferated on the bead surface to yield growth of a predominantly epithelial cell type. Under specific conditions the microcarrier supported primary cell growth up to levels of 2 × 106 cells per ml. High bead concentrations inhibited cell growth. The inhibition could be overcome by using proportionately higher cell inoculum so that a concentrated culture with 5 × 106 cells per ml was achieved. The inhibitory effect of high bead concentration was found to be due to the absorption of serum protein and certain growth enhancing factors. The fact that the growth enhancing factors were released from cells during the period of trypsinization and were both thermostable and nondialyzable, seems to suggest one approach to a dialysis culture system. In addition, relatively trauma-free primary cell cultures can be achieved by using explant culture without prior trypsinization. In microcarrier suspensions direct growth of primary rat mammary tumor cells was also demonstrated.  相似文献   

8.
In vivo vascular endothelial cell (VEC) migration is thought to play a central role in the development of new capillaries as well as the resurfacing of large vessels. Recently, we have developed an in vitro VEC migration assay system based on the ability of VEC to migrate off of tissue culture microcarrier beads. For these studies, bovine pulmonary artery VEC were grown to confluence on Cytodex 3 microcarrier beads (MCB). Next, the confluent VEC covered microcarrier beads were pipetted into 4-cm2 wells of a tissue culture plate and incubated at 37 degrees C/5% CO2. At various time intervals, the movement of the VEC off of the MCB onto the tissue culture surface was evaluated microscopically. Using this assay, we have studied the effect of endothelial cell growth supplement and various matrices (i.e., fibronectin, gelatin, and Matrigel) on VEC migration. These studies demonstrated that: (i) gelatin had no effect on normal or mitomycin C-pretreated VEC migration; (ii) fibronectin had no effect on normal VEC migration, but stimulated the relative migration of mitomycin pretreated VEC; and (iii) Matrigel significantly suppressed both normal and mitomycin C-pretreated VEC migration. Endothelial cell growth supplement (ECGS) stimulated both normal and mitomycin C-pretreated VEC migration on fibronectin at concentrations of 10 micrograms/ml ECGS. Pretreatment with ECGS had no effect of normal or mitomycin C VEC migration on gelatin. Finally, ECGS stimulated a statistically significant increase in the migration of normal and mitomycin C-pretreated VEC migration on Matrigel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recent studies have identified a group of cytokines which appear to be cell-specific regulators of mobility in nonleukocytic mammalian cells. One example is scatter factor (SF), a soluble protein(s) produced by cultured fibroblasts and vascular smooth muscle cells which causes spreading and separation ("scattering") of tight, cohesive colonies of epithelial cells. Studies of SF action have been limited because the degree of scattering is difficult to quantitate and because scattering assays cannot be used to study potential target cells that do not form tight, cohesive colonies. We developed a simple, quantitative assay of SF-stimulated mobility based on migration of target cells off microcarrier beads onto plastic culture surfaces in 24-well plates. We showed that crude and partially purified SF derived from ras-transformed 3T3 cells stimulates migration of both epithelial and vascular endothelial cells but not of producer or nonproducer fibroblasts. Scatter and migration-stimulating activities copurified on cation exchange chromatography; and the degree of stimulation was closely correlated with scattering titer regardless of SF purity. Migration of endothelial cells from beads, while extremely sensitive to SF, was not affected by serum concentration (1 to 10%), various purified growth factors, or fibronectin. Both scattering and migration from beads were blocked by cycloheximide (0.1 microgram/ml) during assay incubation, suggesting that these processes require protein synthesis. The microcarrier bead assay may be a useful quantitative tool to study the biochemical mechanisms of SF-stimulated cell migration.  相似文献   

10.
Bead-to-bead transfer of Vero cells in microcarrier culture   总被引:2,自引:0,他引:2  
Cell harvesting technique is of considerable importance in the scale-up of microcarrier cultures of anchorage-dependent cells. The traditional methods are often time- and labor-consuming and cause physiological damage to the cells. Bead-to-bead cell transfer provides an attractive solution to the scale up process. By intermittent agitation, successful cell transfer was achieved. Significant cell growth was observed where bare beads contacted with confluent ones. Most of the fresh microcarriers reached near confluence four days after addition into the culture medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Macrovascular endothelial cells isolated from the human umbilical vein and microvessel endothelium from the newborn foreskin dermis differ in their requirements for optimal growth in vitor. In the presence of 5 x 10?4 M dibutyryl cyclic AMP (Bt2cAMP), human dermal microvessel endothelial cell proliferation rate increased to give a cell number of 203% of control values by day 10 in culture. The cells retained their characteristic endothelial cell morphology, reached confluence, and could be serially passaged. Cells grown in the absence of Bt2cAMP did not proliferate readily and grew in a disorganized pattern. The effect of Bt2cAMP on microvascular endothelial cell proliferation rate and morphology could be duplicated by cholera toxin (CT) used together with isobutyl methyl-xanthine (IMX). These agents were found to elevate intracellular levels of cyclic AMP in microvascular endothelium over 40-fold. Human umbilical vein cells in culture failed to respond to either Bt2cAMP or CT together with IMX. The growth-promoting effect of dibutyryl cyclic AMP (Bt2cAMP) on human foreskin dermal microvascular endothelium in vitro is in marked contrast to the lack of response of human umbilical vein cells. These results provide further evidence of differences in the mechanisms that regulate macro and microvessel endothelial cell proliferation in vitro.  相似文献   

12.
An oxygen supply strategy involving agitation speed and aeration method for the large-scale production of tissue plasminogen activator (TPA) by a microcarrier cell culture was investigated by small-scale model experiments. A preliminary calculation indicated that diffusion limitation of dissolved oxygen (DO) could be caused in a microcarrier sedimentation layer more than 0.5 mm in thickness. Within an agitation speed range above 70 rpm, which was the critical speed for all of the microcarrier beads to remain suspended and thus for avoiding a deficiency of DO, the TPA productivity was higher at a lower agitation speed, while the cell concentration was not affected by the agitation speed. The addition of soluble starch to the culture medium prevented sedimentation of the microcarrier beads, even at the low agitation speed of 20 rpm, resulting in a TPA productivity higher than that at 70 rpm, which was the optimum speed without soluble starch. Use of an air spray system with an optimized air flow rate resulted in a kLa 2.35 times higher than that with simple surface aeration. Increasing the internal pressure of the culture from 0.2 kg/cm2 (1209 hPa) to 1.5 kg/cm2 (2483 hPa) had no effect on the cell growth but slightly increased the TPA production rates. However, based on the glucose consumption, both the cell and TPA yields were much improved by pressurization. As an optimum mixing and oxygen supply strategy for the production of TPA on a large scale, it is recommended that soluble starch be added to the culture medium to allow the microcarrier suspension to be maintained at a low agitation speed, while keeping a high oxygen transfer rate by means of an air spray system and pressurization.  相似文献   

13.
A fundamental characteristic of vascular endothelium is that it exists as a monolayer, a condition that must be met in both vascular growth and repair. Maintenance of the monolayer is important both for the exchange of nutrients and for interactions between blood solutes and endothelial enzymes and transport systems. We have used time-lapse cinematography to compare proliferative behavior of bovine pulmonary endothelial cells in (1) establisment of a monolayer from a low-density seed (7.5 × 104 cells in a 60 mm dish) and (2) restitution of a confluent monolayer (approx. 2.9 × 106 cells in a 60 mm dish) following a mechanical wound (removal of cells from an area 5 × 15 mm by scraping). Culture 2 was not refed after wounding. In culture 2, approx. 30% of the cells accounted for repopulation (confluence in 40 hr). In culture I, all cells entered into division. Participating cells of culture 2 began division immediately (69 divisions/filmed area in 10 hr, vs. four divisions in culture I). Interdivision times (IDT) were longer and relatively constant in culture I until near confluence; none were < 10 h, whereas in 2, 24% of the IDT's were ≤ 10 hr. Remarkably, IDTs of culture 2 decreased steadily until confluence was re-established. Cell migration in culture 1 was multidirectional while direction of migration in culture 2 was always into the wound area. Mean migration rate (MIG) in culture 2 was related to the site of origin of the cells, those dividing farthest from the unwounded area had fastest MIGs. Neither culture formed more than a single layer of cells. Although the cell kinetics of cultures 1 and 2 differed, the same goal, confluence, was achieved in either case.  相似文献   

14.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

15.
Microcarrier culture was investigated for the propagation of attenuated hepatitis A vaccine in the anchorage-dependent human fibroblast cell line, MRC-5. Cells were cultivated at 37°C for one to two weeks, while virus accumulation was performed at 32°C over 21 to 28 days. The major development focus for the microcarrier process was the difference between the cell and virus growth phases. Virus antigen yields, growth kinetics, and cell layer/bead morphology were each examined and compared for both the microcarrier and stationary T-flask cultures. Overall, cell densities of 4–5×106 cells/ml at 5–10 g/l beads were readily attained and could be maintained in the absence of infection at either 37°C or 32°C. Upon virus inoculation, however, substantial cell density decreases were observed as well as 2.5 to 10-fold lower per cell and per unit surface area antigen yields as compared to stationary cultures. The advantages as well as the problems presented by the microcarrier approach will be discussed.  相似文献   

16.
The microcarrier technique for the growth of anchorage-dependent animal cells has been studied and significantly improved. Excellent cell growth (up to 5 × 106 cells/ml) has been obtained on a newly synthesized microcarrier optimized with respect to substitution with a positively charged exchange moiety. Various parameters of microcarrier culture were examined in order to identify the source of reported “toxicities” associated with this technique. The hypothesis that bead adsorption of nutrients is responsible for such “toxicities” was found to be inconsistent with our results, which suggest that microenvironmental effects are critical for cell propagation on microcarriers.  相似文献   

17.
The kinetics of mammalian cell growth in a microcarrier culture are affected by the distribution of cells on microcarriers. It has been shown previously that a critical cell number per microcarrier is required for the growth of FS-4 cells on microcarriers. It is advantageous to alter the cell distribution on microcarriers to allow for a larger fraction of microcarriers to acquire enough cells to initiate normal growth. This can be achieved by selecting the diameter of the microcarriers employed. It has also been shown previously that the critical cell number could be reduced by choosing a better culture medium to support low density growth. However, even if all cells inoculated into a culture are capable of growing to confluence, it is still necessary to select the microcarrier diameter ration ally to improve the growth kinetics. The method of selecting the microcarrier diameter is discussed. By employing a improved medium as well as using microcarriers of selected diameter, the multiplication ratio was in creased to 15- to 16-fold for FS-4 cells, as opposed to 3- to 4-fold typically obtained in a batch culture.  相似文献   

18.
A low-serum medium containing bovine serum albumin (BSA) was investigated with respect to the growth of and tissue plasminogen activator (TPA) production by human embryo lung (HEL) cells on microcarrier beads and in collagen gel. BSA and ferrous sulfate were chosen as substitutes for fetal calf serum (FCS) through a simple screening test involving many substances. The growth promoting effects of BSA and ferrous sulfate were independent of each other and from the FCS concentration. Though BSA inhibited initial cell attachment to the carrier surface, it did promote the growth of cells attached to microcarrier beads. Cells grown on microcarrier beads in the low-serum medium containing BSA, ferrous sulfate and 3% FCS produced an amount of TPA similar to that produced by ones grown in the 10% FCS medium. Although cells on the dish surface did not grow at all on serum-free media containing BSA and ferrous sulfate, cells in the collagen gel were able to grow slightly on the serum-free medium. Cells grown on the low-serum medium in collagen gel produced more TPA over a long period than those in the microcarrier beads using the low-serum medium. The optimum concentration of proteose peptone in the TPA production medium for the collagen gel culture was similar to that for the dish surface culture.  相似文献   

19.
Growth of Fish Cell Lines on Microcarriers   总被引:1,自引:1,他引:0       下载免费PDF全文
Microcarrier beads were evaluated as substrates for the propagation of five anchorage-dependent fish cell lines. Growth of rainbow trout gonad (RTG-2) and Atlantic salmon cells was limited on microcarriers maintained in suspension. However, stationary microcarriers were suitable substrates for the growth of RTG-2, AS, Chinook salmon embryo (CHSE-214), and fathead minnow cells. Cell yields ranged from 2 × 106 to 2.9 × 106 cells per ml, representing 7- to 10-fold increases over the initial cell concentrations. The yield of new RTG-2 cells per unit volume of growth medium was 2.8 times greater in microcarrier cultures than in standard monolayer cultures. Northern pike cells failed to grow on microcarriers. Yields of infectious pancreatic necrosis virus propagated in microcarrier cultures of RTG-2 cells were more than twice the yields in standard monolayer cultures. The greater economy of microcarrier cultures in terms of growth vessel and medium requirements holds great promise for the large-scale production of anchorage-dependent fish cell cultures and fish viruses.  相似文献   

20.
A new cell culture microcarrier that can be covalently bonded by cell attachment proteins and can be thin-sectioned for electron microscopy was synthesized. It was easily made by sulfonating cross-linked polystyrene beads for a negative surface charge followed by covalent attachment of polyethylenimine for a positive charge. Cell attachment proteins, e.g. collagen, was covalently bonded directly to the microcarrier using a carbodiimide or after activating the microcarrier surface with glutaraldehyde. HeLa-S3 cells attached, spread and grew to confluence more efficiently on the positive microcarriers and those coated with collagen than on the negative ones. Endothelial cells grew best on those with a negative surface charge. The nature of the microcarrier surface was not the only aspect involved in cell adhesion but also the type of serum proteins adsorbed. Qualitatively different proteins coated the microcarriers depending upon whether the carrier was negative, positive or coated with collagen. Comparison of various types of available microcarriers indicated that the modified cross-linked polystyrene beads used here were best for transmission and scanning electron microscopy. Endothelial cells grown on the microcarriers had the same ultrastructure as cells grown in monolayers in culture dishes. Of a variety of microcarriers tested the modified cross-linked polystyrene beads were the only ones that could be used for both ultrastructural and biochemical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号