首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease.  相似文献   

2.
The putP gene encodes the major proline permease in Salmonella typhimurium that couples transport of proline to the sodium electrochemical gradient. To identify residues involved in the cation binding site, we have isolated putP mutants that confer resistance to lithium during growth on proline. Wild-type S. typhimurium can grow well on proline as the sole carbon source in media supplemented with NaCl, but grows poorly when LiCl is substituted for NaCl. In contrast to the growth phenotype, proline permease is capable of transporting proline via Na+/proline or Li+/proline symport. Therefore, we selected mutants that grow well on media containing proline as the sole carbon source in the presence of lithium ions. All of the mutants assayed exhibit decreased rates of Li+/proline and Na+/proline cotransport relative to wild type. The location of each mutation was determined by deletion mapping: the mutations cluster in two small deletion intervals at the 5' and 3' termini of the putP gene. The map positions of these lithium resistance mutations are different from the locations of the previously isolated substrate specificity mutations. These results suggest that Lir mutations may define domains of the protein that fold to form the cation binding site of proline permease.  相似文献   

3.
Genetics of L-proline utilization in Escherichia coli.   总被引:16,自引:11,他引:5       下载免费PDF全文
L-Azetidine-2-carboxylate (AC) and 3,4-dehydro-D,L-proline (DHP) are toxic L-proline analogs that can be used to select bacterial mutants defective for L-proline transport. Mutants resistant to AC and DHP are defective for proline transport alone (putP mutants), and mutants resistant to AC but not to DHP are defective both in putP and in the closely linked proline dehydrogenase gene putA. Proline dehydrogenase oxidizes DHP but not AC, probably detoxifying the former compound. These observations were exploited in preparing an otherwise isogenic set of Escherichia coli K-12 strains with well-defined defects in the putP and putA genes. The results of this study suggest that the genetic and biochemical characteristics of proline utilization in E. coli K-12 are closely analogous to those of Salmonella typhimurium.  相似文献   

4.
Two proline porters in Escherichia coli K-12   总被引:12,自引:10,他引:2       下载免费PDF全文
Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus.  相似文献   

5.
6.
7.
A major proline carrier in Escherichia coli encoded by the putP gene mediates proline/Na+ or Li+ symport. Proline carrier mutants with altered cation specificity were obtained by mutagenesis with nitrous acid in vitro of a plasmid carrying the wild-type putP gene. Two mutant strains harboring plasmid pMOP4135 and pMOP4141 could transport proline efficiently only in the presence of an increased concentration of sodium ion. Mutations of these plasmids, putP4135 and putP4141, caused reduction of affinity for Na+ of proline transport and binding, without remarkable change in the affinity for proline or in production of the carriers. Consistent with the lower affinity of the putP4141 carrier for Na+, the mutant carrier was supersensitive to N-ethylmaleimide inhibition. The pH dependence of proline binding was also changed in these mutant carriers. The lesions of putP4135 and putP4141 were located in the N-terminal part of the putP gene (ClaI-PvuII fragment) by in vitro recombination and subsequent examination of the phenotype of the transformants. DNA sequencing of these fragments revealed one base alteration of G to A at nucleotides 299 and 656 in pMOP4141 and pMOP4135, respectively, which corresponded to amino acid changes from Gly22 to glutamic acid and Cys141 to tyrosine, respectively.  相似文献   

8.
Strains of Salmonella typhimurium deficient in one or more of the proline transport systems have been constructed and used to study the mechanism of energy coupling to transport. Proline uptake through the major proline permease (PP-I, putP) is shown to be absolutely coupled to Na+ ions and not to H+ ions as has previously been assumed. Transport through the minor proline permease (PP-II, proP), however, is unaffected by the presence or absence of Na+. The effect of Na+ on the kinetics of proline uptake shows that external Na+ increases the Vmax for transport. It seems probable that proline transport through PP-I is also coupled to Na+ ions in Escherichia coli.  相似文献   

9.
Two putP mutants of Escherichia coli K-12 that were defective in proline transport but retained the binding activities of the major proline carrier were isolated (T. Mogi, H. Yamamoto, T. Nakao, I. Yamato, and Y. Anraku, Mol. Gen. Genet. 202:35-41, 1986). One of these mutations and three null-type mutations (K. Motojima, I. Yamato, and Y. Anraku, J. Bacteriol. 136:5-9, 1978) were cloned into a pBR322 putP+ hybrid plasmid (pTMP5) by in vivo recombination. Cytoplasmic membrane vesicles were prepared from the mutant strains and strains harboring pTMP5 putP plasmids, and the properties of the proline-binding reaction of the mutant putP carriers in membranes were examined under nonenergized conditions. The putP19, putP21, and putP22 mutations, which were mapped in the same DNA segment of the putP gene (Mogi et al., Mol. Gen. Genet. 202:35-41, 1986), caused the complete loss of proline carrier activity. The proline carriers encoded by the mutant putP genes, putP9 and putP32, and putP32 in pTMP5-32, which was derived from in vivo recombination with the putP32 mutation, had altered sodium ion and proton dependence of binding affinities for proline and were resistant to N-ethylmaleimide inactivation without changes in the specificities for substrates and alkaline metal cations. The nucleotide sequence of the putP32 lesion located on the 0.35-megadalton RsaI-PvuII fragment in the putP gene in pTMP5-32 was determined; the mutation changed a cytosine at position 1001 to a thymine, causing the alteration of arginine to cysteine at amino acid position 257 in the primary structure of the proline carrier. It was shown that this one point mutation was enough to produce the phenotype of pTMP5-32 by in vitro DNA replacement of the AcyI-PvuII fragment of the wild-type putP gene with the DNA fragment containing the mutated nucleotide sequence.  相似文献   

10.
Pseudomonas putida KT2442 is a root-colonizing strain which can use proline, one of the major components in root exudates, as its sole carbon and nitrogen source. A P. putida mutant unable to grow with proline as the sole carbon and nitrogen source was isolated after random mini-Tn5-Km mutagenesis. The mini-Tn5 insertion was located at the putA gene, which is adjacent to and divergent from the putP gene. The putA gene codes for a protein of 1,315 amino acid residues which is homologous to the PutA protein of Escherichia coli, Salmonella enterica serovar Typhimurium, Rhodobacter capsulatus, and several Rhizobium strains. The central part of P. putida PutA showed homology to the proline dehydrogenase of Saccharomyces cerevisiae and Drosophila melanogaster, whereas the C-terminal end was homologous to the pyrroline-5-carboxylate dehydrogenase of S. cerevisiae and a number of aldehyde dehydrogenases. This suggests that in P. putida, both enzymatic steps for proline conversion to glutamic acid are catalyzed by a single polypeptide. The putP gene was homologous to the putP genes of several prokaryotic microorganisms, and its gene product is an integral inner-membrane protein involved in the uptake of proline. The expression of both genes was induced by proline added in the culture medium and was regulated by PutA. In a P. putida putA-deficient background, expression of both putA and putP genes was maximal and proline independent. Corn root exudates collected during 7 days also strongly induced the P. putida put genes, as determined by using fusions of the put promoters to 'lacZ. The induction ratio for the putA promoter (about 20-fold) was 6-fold higher than the induction ratio for the putP promoter.  相似文献   

11.
Proline is utilized by all organisms as a protein constituent. It may also serve as a source of carbon, energy and nitrogen for growth or as an osmoprotectant. The molecular characteristics of the proline transport systems which mediate the multiple functions of proline in the Gram negative enteric bacteria, Escherichia coli and Salmonella typhimurium, are now becoming apparent. Recent research on those organisms has provided both protocols for the genetic and biochemical characterization of the enzymes mediating proline transport and molecular probes with which the degree of homology among the proline transport systems of archaebacteria, eubacteria and eukaryotes can be assessed. This review has provided a detailed summary of recent research on proline transport in E. coli and S. typhimurium; the properties of other organisms are cited primarily to illustrate the generality of those observations and to show where homologous proline transport systems might be expected to occur. The characteristics of proline transport in eukaryotic microorganisms have recently been reviewed (Horak, 1986).  相似文献   

12.
A cluster of genes essential for degradation of proline to glutamate (put) is located between the pyrC and pyrD loci at min 22 of the Salmonella chromosome. A series of 25 deletion mutants of this region have been isolated and used to construct a fine-structure map of the put genes. The map includes mutations affecting the proline degradative activities, proline oxidase and pyrroline-5-carboxylic dehydrogenase. Also included are mutations affecting the major proline permease and a regulatory mutation that affects both enzyme and permease production. The two enzymatic activities appear to be encoded by a single gene (putA). The regulatory mutation maps between the putA gene and the proline permease gene (putP).  相似文献   

13.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

14.
Proline is converted to glutamate in the yeast Saccharomyces cerevisiae by the sequential action of two enzymes, proline oxidase and delta 1-pyrroline-5-carboxylate (P5C) dehydrogenase. The levels of these enzymes appear to be controlled by the amount of proline in the cell. The capacity to transport proline is greatest when the cell is grown on poor nitrogen sources, such as proline or urea. Mutants have been isolated which can no longer utilize proline as the sole source of nitrogen. Mutants in put1 are deficient in proline oxidase, and those in put2 lack P5C dehydrogenase. The put1 and put2 mutations are recessive, segregate 2:2 in tetrads, and appear to be unlinked to one another. Proline induces both proline oxidase and P5C dehydrogenase. The arginine-degradative pathway intersects the proline-degradative pathway at P5C. The P5C formed from the breakdown of arginine or ornithine can induce both proline-degradative enzymes by virtue of its conversion to proline.  相似文献   

15.
Results of studies on proline-nonutilizing (Put-) mutants of the yeast Saccharomyces cerevisiae indicate that proline is an essential intermediate in the degradation of arginine. Put- mutants excreted proline when grown on arginine or ornithine as the sole nitrogen source. Yeast cells contained a single enzyme, delta 1-pyrroline-5-carboxylate (P5C) dehydrogenase, which is essential for the complete degradation of both proline and arginine. The sole inducer of this enzyme was found to be proline. P5C dehydrogenase converted P5C to glutamate, but only when the P5C was derived directly from proline. When the P5C was derived from ornithine, it was first converted to proline by the enzyme P5C reductase. Proline was then converted back to P5C and finally to glutamate by the Put enzymes proline oxidase and P5C dehydrogenase.  相似文献   

16.
Exogenous proline specifically stimulates the growth rate of enteric bacteria in media of inhibitory osmotic strength (J. H. B. Christian, Aust. J. Biol. Sci. 8:490-497, 1955). I observed that Salmonella typhimurium mutants which lack both of the previously known proline permeases (putP proP) are stimulated by proline in media of inhibitory osmolarity. I propose that there is a third proline permease which functions only in media of elevated osmolarity. This conclusion is based on the observations that, in media of elevated osmolarity, (i) the sensitivity of putP proP mutants to toxic proline analogs increases, (ii) proline requirements for maximal growth of proline auxotrophic putP proP mutants decreases, and (iii) the specific rate of incorporation of radioactive proline into protein of growing cells increases. I obtained a Tn10-induced mutation in a gene (proU) required for the functioning of the third proline permease and determined the map location to be at 59 map units of the chromosome, between srlA and tct, 66% linked to nalB in P22 transduction. My results suggest that the function of the third, osmotically stimulated permease might be to accumulate high intracellular proline levels during osmotic stress. Possible mechanisms by which proline might cause growth stimulation are discussed.  相似文献   

17.
PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates.  相似文献   

18.
This paper reports some biochemical characteristics of a second L-proline transport system in Salmonella typhimurium. In the accompanying paper, R. Menzel and J. Roth (J. Bacteriol. 141:1064--1070, 1980) have identified this system by showing that it is inactivated by mutations at the locus proP. We have found that it is an active transport system with an apparent Km for L-proline of 3 x 10(-4) M and a strict specificity for L-proline and some of its analogs. Unlike the L-proline transport system encoded in putP, this second system is induced by amino acid limitation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号