首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
1. The time-course of the effects of ethanol administration on the metabolite concentrations, redox states and phosphorylation state was studied in the freeze-clamped liver of starved rats. The response was found to vary with the time after ethanol administration. 2. Administration of ethanol caused an immediate decrease in the [NAD(+)]/[NADH] ratio of both cytoplasm and mitochondria, which persisted over the 30min studied. 3. The free cytoplasmic [NADP(+)]/[NADPH] ratio in liver decreases immediately after ethanol administration but returns nearly to control values after 15min. 4. The cytoplasmic [ATP]/[ADP][HPO(4) (2-)] ratio is elevated 15min after ethanol administration in the starved rat. 5. The rapid and large changes in most metabolite concentrations measured appeared to result from the maintenance of near-equilibrium in a wide interlinked network. 6. Differences between fed and starved rats 15min after ethanol administration were slight.  相似文献   

2.
1. A study has been made of the ability of rat liver in vivo to maintain equilibrium in the combined glyceraldehyde 3-phosphate dehydrogenase, 3-phosphoglycerate kinase and lactate dehydrogenase reactions, i.e. in the system: [Formula: see text] Attempts were made to upset equilibrium. The [lactate]/[pyruvate] ratio was rapidly changed by injection of ethanol or crotyl alcohol, and the value of [ATP]/[ADP][HPO(4) (2-)] was rapidly changed by injection of ethionine or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone. 2. The concentrations of the metabolites occurring in the above equation were measured in freeze-clamped liver. 3. Although the injected agents caused large changes in the concentrations of the individual components, near-equilibrium in the system was maintained, as indicated by the fact that the value of [ATP]/[ADP][HPO(4) (2-)], referred to as the phosphorylation state of the adenine nucleotides, measured directly agreed with the value calculated for equilibrium conditions from the above equation. 4. The results are discussed and taken to confirm that the order of magnitude of the value of the redox state of the cytoplasmic NAD couple in rat liver is controlled by the phosphorylation state of the adenine nucleotide system.  相似文献   

3.
Free cytosolic adenylates were examined in relation to adenosine plus inosine released from perfused working guinea-pig hearts. Whole-tissue adenylate data from freeze-clamped hearts were quantitatively compared with corresponding values obtained by subcellular fractionation of homogenized myocardium in non-aqueous media. Adenosine and inosine in venous cardiac effluents were measured by high-performance liquid chromatography. Hearts, perfused at their natural flows, were subjected to various workloads, substrates and catecholamines to alter myocardial energy metabolism and respiration over a wide physiological range. Non-aqueous cytosolic ATP and creatine phosphate (CrP) accounted for more than 80% of the respective total myocardium content. The cytosolic CrP/Pi ratio was in near-quantitative agreement with the overall tissue CrP/Pi ratio when the latter parameter was corrected for extracellular Pi. This was conclusive evidence that ATP, CrP and Pi were predominantly located in the cytosol of the well-oxygenated cardiomyocyte. Measured myocardial oxygen uptake (MVO2) was reciprocally related to the phosphorylation state of CrP [( CrP]/[Cr] X [Pi]) and hence that of ATP [( ATP]/[ADP] X [Pi]) assuming the creatine kinase at near-equilibrium at a near-constant pH of 7.2. On the other hand, calculated mean free cytosolic ADP concentrations increased essentially linearly up to threefold with increasing MVO2 in the presence of virtually unchanged or only slightly decreased ATP levels; this was found both according to the whole tissue and the special subcellular fractionation data. Employing the myokinase mass-action ratio and substituting total cardiac ADP by the mean free cytosolic ADP concentrations, the mean free cytosolic AMP concentrations proved to be in the nanomolar range, i.e. up to three orders of magnitude lower than the overall tissue AMP content. We propose, therefore, that in the normoxic heart, AMP is located predominantly in the mitochondrial compartment. Nevertheless, both free cytosolic AMP concentration and release of adenosine plus inosine were apparently square or even higher-power functions of the rate of cardiac respiration. On the other hand, the mean purine nucleoside release seemed linearly correlated (r = 0.920) with the calculated free cytosolic AMP concentration. Our observations seem to suggest that the concentrations of free ADP and AMP in the cytosol are major determinants of the production of inosine and coronary vasodilator adenosine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Rabbit hearts were perfused with Krebs-Henseleit bicarbonate buffer supplemented with 15 mM glucose and 10 mU/ml of insulin +/- Pi. At the end of 60 min the hearts were freeze-clamped and the content of ATP, creatine phosphate, creatine, lactate, pyruvate, DHAP and 3-P glycerate were determined enzymatically in neutralized perchloric acid tissue extracts. The free cytosolic ADP and Pi and the cytosolic NAD+ redox and phosphorylation potentials were calculated from the measured metabolite concentrations. Pi free perfusion resulted in increased creatine, free cytosolic ADP and cytosolic phosphorylation potential, decreased calculated free Pi and no change in cardiac ATP and creatine phosphate content. The increase in the cytosolic phosphorylation potential was due to the lowering of cytosolic free Pi. The increase in ADP was due to the increase in creatine. The increase in creatine appeared to be due to an inhibition of creatine efflux from the heart during Pi free perfusion which was mediated by an enhanced Na+ electrochemical gradient.  相似文献   

5.
Using 31P NMR spectroscopy, we have measured the rate of ATP synthesis, and the free concentrations of ATP, ADP, cytoplasmic Pi, and H+ in maize root tips under a wide range of conditions. We show that the ratio [ATP]/[ADP] in normoxic root tips is greater than 25. We found no simple relationship between the concentration of ATP and the rate of ATP synthesis: when the rate of ATP synthesis decreases in response to different treatments, the concentration of ATP can increase, decrease, or remain unchanged. Clear relationships were obtained, however, when the rate of synthesis of ATP was plotted against the logarithm of the ratio psi, defined as [ATP]/[ADP][Pi][H+]. Two curves were obtained, depending on which of two situations pertained. First, if mitochondrial ATP synthesis was inhibited, e.g., by KCN or hypoxia, ln psi decreased monotonically as rates of ATP synthesis decreased. The decrease in ln psi may account for decreases in the rates of biosynthetic reactions dependent on ATP, such as protein synthesis, as they approach equilibrium. Second, if consumption of ATP for biosynthetic reactions was inhibited, by treatment with succinate, ln psi increased as rates of ATP synthesis decreased. The increase in ln psi may account for decreases in the rate of ATP synthesis, as oxidative phosphorylation approaches equilibrium.  相似文献   

6.
The relationship between intra- and extramitochondrial ATP utilization was investigated in liver mitochondria isolated from normally fed, starved and high-protein fed rats. ATP export was provoked by adding a hexokinase-glucose-trap and intramitochondrial ATP consumption by adding ammonia, bicarbonate and ornithine in order to stimulate citrulline synthesis. Both processes compete for ATP produced via oxidative phosphorylation; the rate of citrulline formation declines as the extramitochondrial [ATP]/[ADP] ratio decreases. It is concluded that ATP for adenine nucleotide translocation and that for carbamoyl phosphate synthesis are delivered from a common intramitochondrial pool of adenine nucleotides. In mitochondria from rats with a high-protein diet, citrulline synthesis greatly stimulates the rate of oxidative phosphorylation (about two thirds of state 3 respiration). Under these conditions the intramitochondrial [ATP]/[ADP] ratio is significantly reduced. The intramitochondrial [ATP]/[ADP] ratio is not in thermodynamic equilibrium with the extramitochondrial one.  相似文献   

7.
1. Measurements of ATP, ADP and AMP concentrations in livers of rats that had been delivered by Caesarian section indicate a rapid shift from a low to a high [ATP]/[AMP] ratio. This change is consistent with the cessation of glycolysis and the initiation of gluconeogenesis at birth. 2. When newborn animals are exposed to a 100% nitrogen atmosphere the hepatic ATP concentration falls and AMP increases. 3. Calculations of the [ATP][AMP]/[ADP](2) ratio give values that are close to the equilibrium constant of adenylate kinase except when the ATP concentration is high. 4. This difference cannot be accounted for by the preferential binding of available Mg(2+) to ATP(4-) rather than ADP(3-). It is concluded that the relative proportions of adenine nucleotides at any level of phosphorylation are only partly regulated by adenylate kinase.  相似文献   

8.
The dependence of ATP synthesis coupled to electron transfer from 3-hydroxy-butyrate (3-OH-B) to cytochrome c on the intramitochondrial pH (pHi) was investigated. Suspensions of isolated rat liver mitochondria were incubated at constant extramitochondrial pH (pHe) with ATP, ADP, Pi, 3-OH-B, and acetoacetate (acac) (the last two were varied to maintain [3-OH-B]/[acac] constant), with or without sodium propionate to change the intramitochondrial pH. Measurements were made of the steady-state water volume of the mitochondrial matrix, transmembrane pH difference, level of cytochrome c reduction, concentration of metabolites and rate of oxygen consumption. For each experiment, conditions were used for which transmembrane pH was near maximal and minimal values and the measured extramitochondrial [ATP], [ADP], and [Pi] were used to calculate log[ATP]/[ADP][Pi]. When [3-OH-B]/[acac] and [cyt c2+]/[cyt c3+] were constant, and pHi was decreased from approx. 7.7 to 7.2, log [ATP]/[ADP][Pi] at high pHi was significantly (P less than 0.02) greater than at low pHi. The mean slope (delta log [ATP]/[ADP][Pi] divided by the change in pHi) was 1.08 +/- 0.15 (mean +/- S.E.). This agrees with the slope of 1.0 predicted if the energy available for ATP synthesis is dependent upon the pH at which 3-hydroxybutyrate dehydrogenase operates, that is, on the pH of the matrix space. The steady-state respiratory rate and reduction of cytochrome c were measured at different pHi and pHe values. Plots of respiratory rate vs.% cytochrome c reduction at different intra- and extramitochondrial pH values indicated that the respiratory rate is dependent upon pHi and not on pHe. This implies that the matrix space is the source of protons involved in the reduction of oxygen to water in coupled mitochondria.  相似文献   

9.
1. The ratio [ATP]/[ADP][P(i)], as measured by direct determination of the three components in rat liver, was found in various nutritional states to have approximately the same value as the ratio [ATP]/[ADP][P(i)] calculated from the concentrations of lactate, pyruvate, glyceraldehyde phosphate and 3-phosphoglycerate on the assumption that lactate dehydrogenase, glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase are at near-equilibrium in the liver. This implies that the redox state of the NAD couple in the cytoplasm is linked to, and partially controlled by, the phosphorylation state of the adenine nucleotides. 2. The combined equilibrium constant of the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase reactions at 38 degrees C and I0.25, was found to be 5.9x10(-6). 3. The fall of the [NAD(+)]/[NADH] ratio in starvation and other situations is taken to be the consequence of a primary fall of the [ATP]/[ADP][HPO(4) (2-)] ratio.  相似文献   

10.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

11.
The reaction catalyzed by calf liver uridine diphosphate glucose synthase (pyrophosphorylase) (EC 2.7.7.9; UTP + glucose 1-phosphate = UDP-glucose + PPi) is an example of an enzymic reaction in which a nucleoside triphosphate other than ATP is the immediate source of metabolic energy. Kinetic properties of the enzyme, acting in the direction of UCP-glucose formation were investigated in vitro. The reaction was inhibited by UDP-glucose (0.072), Pi (11), UDP (1.6), UDP-xylose (0.87), UDP-glucuronate (1.3), and UDP-galacturonate (0.95). The numbers in parentheses indicate the concentration (mM) required for half-maximal inhibition under the conditions used. Other compounds tested, including ATP, ADP, and AMP, had no effect. Over a range of concentrations of UTP (0.04-0.8 MM) and UDP-glucose (0.05-0.03 mM), the reaction rate was more dependent on the concentration ratio [UDP-glucose]/[UTP] than on the absolute concentration of either compound. Comparison of the kinetic properties in vitro with estimates of metabolite levels in vivo suggests that (1) the enzyme operates in a range far from its maximal rate, and (2) the concentrations of glucose 1-phosphate and Pi and the ratio [UDP-glucose]/[UTP] may be the most important determinants of UDP-glucose synthase activity.  相似文献   

12.
The cytoplasmic [MgATP]/[ATP]free ratios, free Mg2+ concentrations,and phosphorylation potentials in mung bean [Vigna mungo (L.)Hepper] root tip cells were investigated by 31P nuclear magneticresonance spectroscopy. 31P NMR spectra show well defined peaksdue to G6P, cytoplasmic Pi, vacuolar Pi, ATP, UDP-glucose andnicotinamide adenine nucleotides. The concentrations of phosphorusmetabolites were determined from quantitative 31P NMR spectra.The [MgATP]/[ATP]free ratio was 9.45. Accordingly, about 90%of the cytoplasmic ATP was complexed to Mg2+. Utilizing thedissociation constant (Kd) determined for MgATP, the cytoplasmicfree Mg2+ concentration was estimated to be 0.4mM. The NMR-derivedphosphorylation potential, [ATP]/([ADP][Pi]), was 960 M-1. Thesodium azide treatment decreased the [ATP]/[ADP] ratio and thephosphorylation potential, and increased the [Mg2+]free. Metabolicinhibition may have been enhanced by an increase in [Mg2+freeand a decrease in the free energy change for ATP hydrolysis,which resulted due to a decrease in the ATP level. 1Present address: National Food Research Institute, TsukubaCity, Ibaraki 305, Japan. (Received February 8, 1988; Accepted June 1, 1988)  相似文献   

13.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

14.
A quantitative analysis of the phosphorus-31 NMR spectra of excised perfused rat liver has been carried out at 80.9 MHz using a 30-mm sample cell. The results indicate that in liver from fed rats, all intracellular ATP is detected by NMR. In contrast, only the cytosolic fractions of Pi and ADP can be observed as indicated by careful analysis of spectra obtained from perchloric acid liver extracts and intact liver under valinomycin perfusion. In well-oxygenated perfused liver the ATP concentration is 7.4 mM. Values of 5.3 mM and 0.9 mM are found respectively for Pi and ADP concentrations in the cytosolic compartment. Cytosolic pH value (pHi) is 7.25 +/- 0.05 and free magnesium concentration 0.5 mM. Addition of 70 mM (0.4%) ethanol to the perfusate of a fed rat liver induces 25% and 38% reduction of ATP and Pi levels, respectively. A large amount of sn-glycerol 3-phosphate is synthesized (up to 11 mM) in the cytosol. After ethanol withdrawal, a large overshoot in cytosolic Pi is observed, which is indicative of a net uptake of Pi across the plasma membrane that occurred during ethanol oxidation. No significant pH variation is observed during ethanol infusion. In perfused liver of rats subjected to 48-h fasts, the concentrations of cytosolic phosphorylated metabolites are 5.3 mM, 0.8 mM and 11.5 mM for ATP, ADP and Pi, respectively. The perfusion of the liver with 70 mM ethanol does not change the adenine nucleotide levels, while the Pi content is decreased by 10%. During a 4-min hypoxia, induced by reducing the perfusion flow rate from 12 ml to 3 ml min-1 (100 g body weight)-1, ATP concentration decreases to 5.8 mM in the fed rat liver. Cytosolic Pi and ADP increase to 8.7 mM and 1.6 mM, respectively. The cytosolic pH evolves to more acidic values and reaches 7.02 +/- 0.05 at the end of the 4-min hypoxic period.  相似文献   

15.
1. Chronic ethanol administration to rats for 21–27 days increases the rate of O2 consumption as measured in liver slices. The extra respiration can be abolished by inhibition of the active transport of Na+ and K+. Dinitrophenol activates the respiratory rate in the liver of the treated animals only in the presence of ouabain. 2. Active (ouabain-sensitive) transport of 86Rb and (Na++K+)-stimulated adenosine triphosphatase activity were increased in the livers of the ethanol-treated animals. 3. Chronic ethanol administration also led to a decrease in the phosphorylation potential ([ATP]/[ADP][Pi]) in the liver cell owing to a decrease in [ATP] and an increase in [Pi]. 4. It is suggested that an increased sodium pump activity is responsible for the increased oxidative capacity and for the insensitivity to dinitrophenol observed in the livers of ethanol-treated animals.  相似文献   

16.
Bioenergetic and hemodynamic consequences of cellular redox manipulations by 0.2-20 mM pyruvate were compared with those due to adrenergic stress (0.7-1.1 microM norepinephrine) using isolated working guinea-pig hearts under the conditions of normoxia, low-flow ischemia, and reperfusion. 5 mM glucose (+ 5 U/l insulin) + 5 mM lactate were the basal energy-yielding substrates. To stabilize left ventricular enddiastolic pressure, ventricular filling pressure was held at 12 cmH2O under all conditions; this preload control minimized Frank-Starling effects on ventricular inotropism. Global low-flow ischemia was induced by reducing aortic pressure to levels (20-10 cmH2O) below the coronary autoregulatory reserve. Reactants of the creatine kinase, including H+ and other key metabolites, were measured by enzymatic, HPLC, and polarographic techniques. In normoxic hearts, norepinephrine stimulations of inotropism, heart rate x pressure product, and oxygen consumption (MVO2) were associated with a fall in the cytosolic phosphorylation potential [( ATP]/[( ADP].[Pi]] as judged by the creatine kinase equilibrium. In contrast, infusion of excess pyruvate (5 mM) markedly increased [ATP]/[( ADP].[Pi]) and ventricular work output, while intracellular phosphate decreased; MVO2 remained constant under the same conditions. During reperfusion following ischemia, pyruvate effected striking and concentration-dependent increases in MVO2, phosphorylation potential, and inotropism. Pyruvate dehydrogenase flux was augmented during reperfusion hyperemia followed by near-complete recoveries of [ATP]/([ADP].[Pi]), contractile force, heart rate x pressure product, and MVO2 in the presence of 5-10 mM pyruvate. Pyruvate also attenuated ischemic adenylate degradation. Omission of glucose from the perfusion medium rendered pyruvate ineffective in postischemic hearts. Similarly, excess lactate (5-15 mM) or acetate (5 mM) failed to reenergize reperfused hearts and severe depressions of MVO2 and inotropism developed despite the presence of glucose. Apparently, subcellular redox manipulations by pyruvate dissociated stimulated mitochondrial respiration and increased inotropism from low cytosolic phosphorylation potentials. This was evidence against the extramitochondrial [ADP].[Pi]/[ATP] ratio being the primary factor in the control of mitochondrial respiration. The mechanism of pyruvate enhancement of inotropism during normoxia and reperfusion is probably multifactorial. Thermodynamic effects on subcellular [NADH]/[NAD+] ratios are coupled with a rise in the cytosolic [ATP]/[( ADP].[Pi]) ratio at constant (normoxia) or increased (reperfusion) MVO2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

18.
Oscillatory behavior of glycolysis in cell-free extracts of skeletal muscle involves repeated bursts of phosphofructokinase activity and associated oscillations in the [ATP]/[ADP] ratio. Addition of citrate, a potent physiological inhibitor of phosphofructokinase, decreased the frequency of the oscillations and delayed the first burst of phosphofructokinase activity in a dose-dependent manner. Citrate decreased the trigger point [ATP]/[ADP] ratio at which bursts of phosphofructokinase activity were initiated but had a much smaller effect on the average [ATP]/[ADP] ratio and did not decrease the peak values of the ratio. When oscillations were prevented by addition of fructose-2,6-P2, the decrease in the [ATP]/[ADP] ratio caused by citrate in the steady state system was similar to the decrease in the trigger point [ATP]/[ADP] ratio in the oscillatory system. The decrease in the average [ATP]/[ADP] ratio was greater in the steady state system than in the oscillating system. These results demonstrate advantages of oscillatory behavior of glycolysis in the regulation of carbohydrate utilization and the maintenance of a high [ATP]/[ADP] ratio.  相似文献   

19.
An investigation into the measurement of Pi and ADP in rat liver in vivo and in freeze-clamped extracts by 31P-n.m.r. spectroscopy was carried out. The concentration of Pi estimated in vivo is less than 25% [1 mM (mumol/ml of cell water)] of the value obtained from freeze-clamped liver (4 mM), whereas ADP in vivo is undetectable (1.4 mM in vitro). At 5 min after infusion of 750 mg of fructose/kg, the Pi content of liver extracts fell to 1.3 mM, whereas Pi is undetectable in vivo under these conditions [Griffiths, Stevens, Gadian, Iles & Porteous (1980) Biochem. Soc. Trans. 8, 641]. The results indicate that the lower Pi and ADP concentrations found in vivo may be due to compartmentation or binding rather than to degradation of labile organic phosphates during extraction. The results are discussed with reference to previous measurements of liver phosphates and investigations of compartmentation in the liver, as are some of the possible consequences for metabolic control in the liver of low ADP and Pi concentrations.  相似文献   

20.
1. Examination of the distribution of L-tri-iodothyronine among rat liver tissue fractions after its intravenous injection into thyroidectomized rats focused attention on mitochondria at very short times after administration. By 15 min this fraction contained 18.5% of the tissue pool; however, the content had decreased sharply by 60 min and even further over the next 3 h. By contrast, the content in all other fractions was constant or increased over 4 h. About 60% of tissue hormone was bound to soluble protein. 2. Mitochondria isolated from thyroidectomized rats showed P/O ratios that were about 50% of those found in normal controls, with both succinate and pyruvate plus malate as substrates. There was no evidence of uncoupling; the respiratory-control ratio was about 6. 3. Mitochondria isolated 15 min after injection of tri-iodothyronine into thyroidectomized rats showed P/O ratios and respiratory-control ratios that were indistinguishable from those obtained in mitochondria from euthyroid animals. The oxidation rate was, however, not restored. 4. Incubation of homogenates of livers taken from thyroidectomized animals injected with L-tri-iodothyronine before isolation of the mitochondria restored the P/O ratio to normal; by contrast, direct addition of hormone to isolated mitochondria had no effect. The role of extramitochondrial factors in rapid tri-iodothyronine action is discussed. 5. Possible mechanisms by which tri-iodothyronine might rapidly alter phosphorylation efficiency are considered: it is concluded that control of adenine nucleotide translocase is unlikely to be involved. 6. The amounts of adenine nucleotides in liver were measured both after thyroidectomy and 15 min after intravenous tri-iodo-thyronine administration to thyroidectomized animals. The concentrations found are consistent with a decreased phosphorylation efficiency in thyroidectomized animals. Tri-iodothyronine injection resulted in very significant changes in the amounts of ATP, ADP and AMP, and in the [ATP]/[ADP] ratio, consonant with those expected from an increased efficiency of ADP phosphorylation. This suggests that the changes seen in isolated mitochondria may indeed reflect a rapid response of liver in vivo to tri-iodo-thyronine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号