首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary The fluorescence intensity of the dye 1,1-dipropyloxadicarbocyanine (DiOC3-(5)) has been measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potential (V m ) under different ionic conditions, after treatment with cation ionophores and after hypotonic cell swelling. Calibration is performed with gramicidin in Na+-free K+/choline+ media, i.e., standard medium in which NaCl is replaced by KCl and cholineCl and where the sum of potassium and choline is kept constant at 155mm. Calibration by the valinomycin null point procedure described by Lariset al. (Laris, P.C., Pershadsingh, A., Johnstone, R.M., 1976,Biochim. Biophys. Acta 436:475–488) is shown to be valid only in the presence of the Cl-channel blocker indacrinone (MK196). Distribution of the lipophilic anion SCN as an indirect estimation of the membrane potential is found not to be applicable for the fast changes inV m reported in this paper. Incubation with DiOC3-(5) for 5 min is demenstrated to reduce the Cl permeability by 26±5% and the NO 3 permeability by 15±2%, while no significant effect of the probe could be demonstrated on the K+ permeability. Values forV m , corrected for the inhibitory effect of the dye on the anion conductance, are estimated at –61±1 mV in isotonic standard NaCl medium, –78±3 mV in isotonic Na+-free choline medium and –46±1 mV in isotonic NaNO3 medium. The cell membrane is depolarized by addition of the K+ channel inhibitor quinine and it is hyperpolarized when the cells are suspended in Na+-free choline medium, indicating thatV m is generated partly by potassium and partly by sodium diffusion. Ehrlich cells have previously been shown to be more permeable to nitrate than to chloride. Substituting NO 3 for all cellular and extracellular Cl leads to a depolarization of the membrane, demonstrating thatV m is also generated by the anions and that anions are above equilibrium. Taking the previously demonstrated single-file behavior of the K+ channels into consideration, the membrane conductances in Ehrlich cells are estimated at 10.4 S/cm2 for K+, 3.0 S/cm2 for Na+, 0.6 S/cm2 for Cl and 8.7 S/cm2 for NO 3 . Addition of the Ca2+-ionophore A23187 results in net loss of KCl and a hyperpolarization of the membrane, indicating that the K+ permeability exceeds the Cl permeability also after the addition of A23187. The K+ and Cl conductances in A23187-treated Ehrlich cells are estimated at 134 and 30 S/cm2, respectively. The membrane potential is depolarized in hypotonically swollen cells, confirming that the increase in the Cl permeability following hypotonic exposure exceeds the concommitant increase in the K+ permeability. In control experiments where the membrane potentialV m =E K =E Cl =E Na , it is demonstrated that cell volume changes has no significant effect on the fluorescence signal, apparently because of a large intracellular buffering capacity. The increase in the Cl conductances is 68-fold when cells are transferred to a medium with half the osmolarity of the standard medium, as estimated from the net Cl efflux and the change inV m . The concommitant increase in the K+ conductance, as estimated from the net K+ efflux, is only twofold.  相似文献   

2.
Summary The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is highly enriched in Na+/K+ ATPase and has been shown by electrophysiological methods to be highly conductive to Cl. In order to study the Cl conductive pathways, membrane vesicles were isolated from the TALH-containing region of the porcine kidney, the red outer medulla, and Cl channel activity was determined by a36Cl uptake assay where the uptake of the radioactive tracer is driven by the membrane potential (positive inside) generated by an outward Cl gradient. The accumulation of36Cl inside the vesicles was found to be dependent on the intravesicular Cl concentration and was abolished by clamping the membrane potential with valinomycin. The latter finding indicated the involvement of conductive pathways. Cl channel activity was also observed using a fluorescent potential-sensitive carbocyanine dye, which detected a diffusion potential induced by an imposed inward Cl gradient. The anion selectivity of the channels was Cl>NO 3 =I gluconate. Among the Cl transport inhibitors tested, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPAB), 4,4-diisothiocyano-stilbene-2,2-disulfonate (DIDS), and diphenylamine-2-carboxylate (DPC) showed IC50 of 110, 200 and 550 m, respectively. Inhibition of36Cl uptake by NPPAB and two other structural analogues was fully reversible, whereas that by DIDS was not. The nonreactive analogue of DIDS, 4,4-dinitrostilbene-2,2-disulfonate (DNDS), was considerably less inhibitory than DIDS (25% inhibition at 200 m). The irreversible inhibition by DIDS was prevented by NPPAB, whereas DPC was ineffective, consistent with its low inhibitory potency. It is proposed that NPPAB and DIDS bind to the same or functionally related site on the Cl channel protein.  相似文献   

3.
Defolliculated oocytes of Xenopus laevis responded to removal of external divalent cations with large depolarizations and, when voltage clamped, with huge currents. Single channel analysis revealed a Cl channel with a slope conductance of about 90 pS at positive membrane potentials with at least four substates. Single channel amplitudes and mean channel currents had a reversal potential of approximately –15 mV as predicted by the Nernst equation for a channel perfectly selective for Cl. Readdition of Ca2+ immediately inactivated the channel and restored the former membrane potential or clamp current. The inward currents were mediated by a Ca2+ inactivated Cl channel (CaIC). The inhibitory potency of Ca2+ was a function of the external Ca2+ concentration with a half maximal blocker concentration of about 20 m.These channels were inhibited by the Cl channel blockers flufenamic acid, niflumic acid and diphenylamine-2-carboxylate (DPC). In contrast, 4,4-acetamido-4-isothiocyanatostilbene-2,2-disulfonicacid (SITS), another Cl channel blocker, led to activation of this Cl channel. Like other Cl channels, the CaIC was activated by cytosolic cAMP. Extracellular ATP inhibited the channel while ADP was without any effect. Injection of phorbol 12-myristate 13-acetate (PMA), a protein kinase C activating phorbol ester, stimulated the Cl current. Cytochalasin D, an actin filament disrupting compound, reversibly decreased the clamp current demonstrating an influence of the cytoskeleton.The results indicate that removal of divalent cations activates Cl channels in Xenopus oocytes which share several features with Cl channels of the CLC family. The former so-called leak current of oocytes under divalent cation-free conditions is nothing else than an activation of Cl channels.The microelectrode measurements are part of the PhD thesis of K. Liebold; the patch clamp contributions are part of the PhD thesis of F.W. Reifarth. This study was supported by the Deutsche Forschungsgemeinschaft (We1858/2-l) and by Sonderforschungsbereich 249.  相似文献   

4.
D. Sanders  F. A. Smith  N. A. Walker 《Planta》1985,163(3):411-418
Rapid lowering of the external pH (pH jump) enhances Cl influx in Chara. Experiments were conducted to distinguish between two factors which have previously been proposed to mediate in the response: raised cytoplasmic pH and lowered cytoplasmic Cl concentration. It is concluded that the latter alternative is more likely because: i) Cl influx is reduced at high external pH; ii) influx following the pH jump is never greater than that following pretreatment in Cl-free solution, which reduces cytoplasmic Cl concentration (Cl starvation); iii) the joint application of pH jump and Cl starvation does not result in a greater Cl influx than does Cl starvation alone; and iv) addition of NH 4 + , which increases cytoplasmic pH, does generate an additional stimulation of Cl influx following a pH jump. It is suggested that the increased cytoplasmic pH at the end of pretreatment at high external pH decays rapidly during the pH jump, and thus any effect on Cl influx is so transient as to be undetectable by the methods used. The results are discussed in terms of a reaction kinetic model for 2H+/Cl cotransport (Sanders, D. and Hansen, U.-P, 1981, J. Member. Biol. 58, 139–153) which describes quantitatively; i) the effects of NH 4 + on Cl influx in terms involving only a change in cytoplasmic pH; and ii) the combined effects of Cl starvation and NH 4 + in terms involving only changes in Cl concentration and cytoplasmic pH. Conversely, the combined effects of Cl starvation and pH jump cannot be described by the model if the effect of the pH jump is the consequence of increased cytoplasmic pH. The simple interpretation of experiments on whole cells involving manipulation of (the electrochemical potential difference for protons across the plasma membrane) is questioned in the light of these and previous findings that secondary factors can determine the response of Cl transport in Chara.Abbreviations CPW Chara pond water - [Cl]c cytoplasmic Cl concentration - pHc cytoplasmic pH - pHo external pH - transmembrane electrochemical gradient of protons - a membrane electrical potential difference  相似文献   

5.
Jajoo  A.  Bharti  S.  Kawamori  A. 《Photosynthetica》2004,42(1):59-64
The decay of tyrosine cation radical was found to be biphasic at 253 K. The fast phase corresponds to the YZ component while the slow phase corresponds to the tyrosine D radical (YD ) component. At 253 K, the t1/2 value was 28.6 s for the fast phase and 190.7 s for the slow phase. The fast phase is attributed to the recombination of charges between YZ and QA . The activation energy for the reaction of YZ with QA between 253 and 293 K was 48 kJ mol–1 in Cl-depleted photosystem 2 (PS2) membranes. Both the decay rate and the amplitude of the PAR -induced signal of YZ were affected by addition of chloride anion. Change in the decay rate and the amplitude of the PAR-induced signal of YZ was observed when other anions like Br, I, F, HCO3 , NO3 , PO4 3– were substituted in the Cl-depleted PS2.  相似文献   

6.
Sabine Doll  Robert Hauer 《Planta》1981,152(2):153-158
The membrane potential of isolated vacuoles of red beet (Beta vulgaris L.) was estimated using several methods. The quenching of the fluorescence of the cyanine dyes 3,3-diethylthiodicarbocyanine iodide (DiS-C2–(5)) and 3,3-dipropylthiodicarbocyanine iodide (DiS-C3–(5)) in vacuoles indicated a transmembrane potential difference, negative inside at low external potassium concentrations. The was found to be-55 mV with two other methods, the distribution of 204T1+ in the presence of valinomycin and the distribution of the lipophilic cation triphenylmethylphosphonium. Uncouplers reduced this value to-35 mV. High external potassium concentrations, comparable to cytosolic values, abolished the membrane potential almost completely. The addition of 1 mM Tris-Mg2+-ATP markedly hyperpolarized the membrane to-75 mV. This effect was prevented by inhibitors of the ATPase activity located in isolated vacuole membranes.Abbreviations ANS aminonaphthalene sulfonate - DiS-C2–(5) 3,3-diethylthiodicarbocyanine iodide - DiS-C3–(5) 3,3-dipropylthiodicarbocyanine iodide - EDAC 1-ethyl-3-C-3dimethylaminopropylcarbodiimide - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - MES morpholinoethylsulfonic acid - TPP+ tetraphenylphoshonium - TPMP triphenylmethylphosphonium - Tris tris(hydroxymethyl)aminomethane  相似文献   

7.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

8.
Summary The changes in the cytoplasmic Cl concentration, [Cl] c , are monitored at the time of withdrawal (starvation) and subsequent replacement of Cl in the outside medium. The measurement technique exploits the involvement of Cl inChara excitation. The transient clamp current due to Cl,I Cl, is separated from other excitation transients through Hodgkin-Huxley (HH) equations, which have been adjusted toChara. TheI Cl amplitude depends on HH parameters, [Cl] c and the maximum membrane conductance to Cl, . The results are discussed in terms of these quantities.I Cl and were found to fall after 6–10 hr of Cl starvation, thus supporting the hypothesis that [Cl c decreases in Cl-free medium. The best HH fit to starved data was obtained with [Cl c =3.5mm. The time-course forI Cl decline is considerably slower than the time-course of the rise of the starvation-stimulated influx. As cells starved for periods longer than 24 hr are re-exposed to Cl, it is revealed that while [Cl] c remains low during long starvation, increases to values greater than those of the normal cells. Such differences among cells starved for various lengths of time have not been detected previously.  相似文献   

9.
Summary An inward current which increases in magnitude over a period of seconds is activated when the membrane ofChara inflata (a green alga) in a K+-conductive state is hyperpolarized by a voltage clamp. The peak current and the half-time of activation are exponentially dependent on membrane potential difference. It was found by using an external Cl electrode that the component exponentially dependent on potential was due to an efflux of Cl. The measured current-voltage curves and the kinetics of deactivation of the current showed that other time-dependent components contributed to the net inward current. The punchthrough theory of Coster (Biophys. J. 5:669–686, 1965) does not adequately explain the inward current since a punchthrough potential could not be obtained, and the inward current was distinctly time dependent. The voltage and time dependence of the inward current strongly suggests that the Cl efflux activated by hyperpolarization is through voltage-gated channels which open more frequently as the membrane is hyperpolarized.  相似文献   

10.
Britto DT  Ruth TJ  Lapi S  Kronzucker HJ 《Planta》2004,218(4):615-622
The first analysis of chloride fluxes and compartmentation in a non-excised plant system is presented, examining ten ecologically pertinent conditions. The short-lived radiotracer couple 38Cl/39Cl was used as a Cl tracer in intact barley (Hordeum vulgare L. cv. Klondike) seedlings, which were cultured and investigated under four external [Cl], from abundant (0.1 mM) to potentially toxic (100 mM). Chloride–nitrogen interactions were investigated by varying N source (NO3 or NH4 +) and strength (0.1 or 10 mM), in order to examine, at the subcellular compartmentation level, the antagonism, previously documented at the influx level, between Cl and NO3 , and the potential role of Cl as a counterion for NH4 + under conditions in which cytosolic [NH4 +] is excessive. Cytosolic [Cl] increased with external [Cl] from 6 mM to 360 mM. Cl influx, fluxes to vacuole and shoot, and, in particular, efflux to the external medium, also increased along this gradient. Efflux reached 90% of influx at the highest external [Cl]. Half-times of cytosolic Cl exchange decreased between high-affinity and low-affinity influx conditions. The relationship between cytosolic [Cl] and shoot flux indicated the presence of a saturable low-affinity transport system (SLATS) responsible for xylem loading of Cl. N source strongly influenced Cl flux to the vacuole, and moderately influenced Cl influx and shoot flux, whereas efflux and half-time were insensitive to N source. Cytosolic pool sizes were not strongly or consistently influenced by N source, indicating the low potential for Cl to act as a counterion to hyperaccumulating NH4 +. We discuss our results in relation to salinity responses in cereals.Abbreviations [Cl]cyt cytosolic chloride concentration - [Cl]o external chloride concentration  相似文献   

11.
Summary The effects of pH on the permeability and conductance of the membranes to nitrate and to chloride of semitendinosus and lumbricalis muscle fibers were examined.Membrane potential responses to quick solution changes were recorded in semitendinosus fibers initially equilibrated in isotonic, high K2SO4 solutions. External solutions were first changed to ones in which either Rb+ or Cs+ replaced K+ and then to solutions containing either NO 3 or Cl to replace SO 4 2– . The hyperpolarizations produced by Cl depend on external pH, being smaller in acid than in alkaline solutions. By contrast, hyperpolarizations produced by NO 3 were independent of external pH over a pH range from 5.5 to 9.0.In addition, voltage-clamp measurements were made on short lumbricalis muscle fibers. Initially they were equilibrated in isotonic solutions containing mainly K2SO4 plus Na2SO4. KCl or KNO3 were added to the sulfate solutions and the fibers were equilibrated in these new solutions. When finally equilibrated the fibers had the same volume they had in the sulfate solutions before the additions. Constant hyperpolarizing voltage pulses of 0.6-sec duration were applied when all external K+ was replaced by TEA+. For these conditions, inward currents flowing during the voltage pulses were largely carried by Cl or NO 3 depending on the final equilibrating solution. Cl currents during voltage pulses were both external pH and time dependent. By contrast, NO 3 currents were independent of both external pH and time.The voltage dependence of NO 3 currents could be fit by constant field equations with aP NO 3 of 3.7·10–6 cm/sec. The voltage dependence of the initial or instantaneous Cl currents at pH 7.5 and 9.0 could also be fit by constant field equations with PCl of 5.8·10–6 and 7.9·10–6 cm/sec, respectively. At pH 5.0, no measurable instantaneous Cl currents were found.From these results we conclude that NO 3 does not pass through the pH, time-dependent Cl channels but rather passes through a distinct set of channels. Furthermore, Cl ions do not appear to pass through the channels which allow NO 3 through. Consequently, the measured ratio ofP Cl/P NO 3 based on membrane potential changes to ionic changes made on intact skeletal muscle fibers is not a measure of the selectivity of a single anion channel but rather is a measure of the relative amounts of different channel types.  相似文献   

12.
The thermophilic phototrophChloroflexus aurantiacus possesses a photosynthetic reaction center (RC) containing a pair of menaquinones as primary (QA) and secondary (QB) electron acceptors and a bacteriochlorophyll dimer (P) as a primary donor. A tetraheme cytochromec 554 with two high(H)- and two low(L)-potential hemes operates as an immediate electron donor for P. The following equilibrium Em,7 values were determined by ESR for the hemes in whole membrane preparations: 280 mV (H1), 150 mV (H2), 95 mV (L1) and 0 mV (L2) (Van Vliet et al. (1991) Eur. J. Biochem. 199: 317–323). Partial electrogenic reactions induced by a laser flash inChl. aurantiacus chromatophores adsorbed to a phospholipid-impregnated collodion film were studied electrometrically at pH 8.3. The photoelectric response included a fast phase of generation ( < 10 ns, phase A). It was ascribed to the charge separation between P+ and QA as its amplitude decreased both at high and low Eh values (Em,high=360±10 mV, estimated Em,low\s-160 mV) in good agreement with Em values for P/P+ and QA/QA redox couples. A slower kinetic component appeared upon reduction of the cytochromec 554 hemes (phase C). With H1 reduced before the flash the amplitude of phase C was equal to 15–20% of that of phase A and its rise time was 1.2–1.3 s: we attribute this phase to the electrogenic electron transfer from H1 to P+. Pre-reduction of H2 decreased the value to about 700–800 ns and increased the amplitude of phase C to 30–35% of that of phase A. Pre-reduction of L1 further accelerated phase C (up to of 500 ns) and induced a reverse electrogenic phase with of 12 s and amplitude equal to 10% of phase A. Upon pre-reduction of L2 the rise time of phase C was decreased to about 300 ns and its amplitude decreased by 30%. The acceleration in the onset of phase C is explained by the acceleration of the rate-limiting H1 P electrogenic reaction after reduction of the other hemes due to their electrostatic influence; a P-H1-(L1-L2)-H2 alignment of redox centers with an approximately rhombic arrangement of the cytochromec 554 hemes is proposed. The observed reverse phase is ascribed to the post-flash charge redistribution between the hemes. Redox titration of the amplitude of phase C yielded the Em,8.3 values of H1, H2 and L2 hemes: 340±10 mV for H1, 160±20 mV for H2 and –40±40 mV for L2.  相似文献   

13.
Summary Hagfish,Myxine glutinosa, were used in an investigation of the possible effects of various eicosanoids and the prostaglandin synthetase inhibitor indomethacin, on cortisol production, blood pressure control, urine flow and electrolyte balance.Cortisol levels in plasma of untreated control animals and plasma from animals 1 h following injection of 50 g kg–1 prostaglandin E1, E2, A2, F2 TXB2 and indomethacin were not detectable. However, plasma cortisol levels rose to between 10 and 26 pg ml–1 1 h following injection of either 50 g kg–1 arachidonic acid or prostaglandin E2. This rise was similar in magnitude to that produced 1 h following administration of 50 g kg–1 porcine ACTH.The resting dorsal aortic blood pressure of between 3.50 and 3.75 mmHg was reduced on average by 50% for 12–15 min when animals received 10 g kg–1 arachidonic acid, prostaglandin E1, E2, A2, and TXB2 and was effectively reduced to zero for 20 min or more following 50 g kg–1 of these eicosanoids. Similar doses of prostaglandin F2, however, evoked an increase in blood pressure (19–33%) whilst indomethacin was without effect.Control measurements of urine flow inMyxine were estimated to be between 540 and 660 l h–1 kg–1. There was a marked reduction in urine output following the arterial vasodepression induced by arachidonic acid, prostaglandin E1, E2, A2 and TXB2 in doses of 10 g kg–1, an effect which became even more pronouced following injection of 50 g kg–1 quantities, leading in some cases to complete anuria. There was no significant change in urine volume following either the vasopressor action of prostaglandin F2 or following indomethacin.None of the compounds tested in this study significantly influenced the plasma or urine electrolyte status ofMyxine.  相似文献   

14.
The uptake ofL-ascorbic acid (vitamin C) by astrocytes was studied using primary cultures prepared from the neopallium of newborn Swiss CD-1 mice or Sprague-Dawley rats. Initial uptake rates were significantly greater in mouse than in rat astrocytes. Exposure of cultures to 0.25 mM dibutyryl cyclic AMP for 2 weeks changed cell morphology from polygonal to stellate and stimulated ascorbate uptake, with the greatest stimulation occurring in mouse astrocytes. Uptake was specific for the vitamin since it was not diminished by the presence of other organic anions including acetate, formate, lactate, malonate, oxalate, p-aminohippurate, pyruvate and succinate. Ascorbate uptake was Na+-dependent but did not have a specific requirement for external Cl (Cl 0). Substitution of Cl 0 by Br or NO3 decreased ascorbate uptake rates by 20–31%; whereas substitution by gluconate or isethionate increased uptake by 20–31%. Ascorbate transport by astroglial cultures from both animal species was rapidly (1 min) and reversibly inhibited by the anion transport inhibitors furosemide, 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid (SITS) and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). The rapid and reversible effects of the impermeant inhibitors (SITS and DIDS) are consistent with direct inhibition of ascorbate transporters located in the astroglial plasma membrane.  相似文献   

15.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

16.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

17.
Summary Chloride ions (Cl) are concentrated in airway epithelial cells and subsequently secreted into the tracheal lumen by downhill flux through apical Cl channels. We have studied Cl currents in cultured canine tracheal cells using the whole-cell voltage-clamp technique. Ultrastructural techniques demonstrated that the cells used in the electrophysiological experiments possessed apical membrane specializations known to be present in the intact, transporting cell type. Cultured cells 2–6 days old were characterized by an input resistance of 3.4±0.8 G (n=11) and a capacitance of 63.8±10.8 pF (n=26). A comparison of 3 and 4 day-old cells with 5 and 6 day-old cells showed that the input resistance decreased almost 50%, and the cell capacitance and the inward and outward currents increased concomitantly approximately 200%. Cultured cells 3–4 days old held at –40 mV produced currents of 196±22 pA at 50 mV and –246±27 pA at –90 mV (n=212) with pipette and bath solutions containing primarily 140 KCl and 140 NaCl, respectively. The chloride channel blocker diphenylamine-2-carboxylate (DPC, 100 m) suppressed whole-cell currents by 76.8% at 60 mV; however, currents were unaffected by the stilbenes SITS (1mm) and DNDS (1–30 m). Replacement of K+ with Cs+ in the pipette solution did not affect the outward current, the current reversal potential, or the input resistance of the cells, indicating that the current was not significantly K+ dependent when the intrapipette solution was buffered to a Ca2+ concentration of 20nm. The Cl/Na+ permeability ratio was estimated to be greater than 11 as calculated from reversal potential measurements in the presence of an internal to external NaCl concentration ratio of 12. Current equilibrium permeabilities, relative to Cl were: I (2.9)NO 3 (1.1)Br (1.1)Cl (1.0)F (0.93)MeSO 4 (0.19)gluconate (0.18)aspartate (0.14). Depolarizations to potentials greater than 20 mV elicited a time-dependent component in the outward current in 71% of the cells studied. Currents inactivated with a double exponential time course at the most depolarized voltages. Recovery from inactivation was fast, holding potential-dependent, and followed a double exponential time course. Current amplitude was increased via a cAMP-dependent pathway as has been demonstrated for single Cl-selective channels in cell-attached patches from cultured canine and human tracheal epithelial cells. Forskolin, an activator of adenylate cyclase, produced a 260% increase in the outward current at +50 mV. In summary, cultured canine tracheal cells have a single resting conductance that is Cl selective, voltage-dependent, and modulated by a cAMP-dependent mechanism. This preparation appears to be appropriate for analysis of cellular modulation of airway Cl channels and Cl secretion.  相似文献   

18.
We studied the effect of naloxone—an antagonist of the opioid receptors—on sensitivity of Cl-activated Mg2+-ATPase from the plasma membrane fraction of bream brain (Abramis brama L.) to GABAa-ergic substances. Preincubation of the plasma membranes with 1–100 M naloxone increased the basal Mg2+-ATPase activity and suppressed its activation by chloride ions. The same effects were observed in the presence of the agonists of GABAa/benzodiazepine receptors: 0.1–100 M GABA, 1–500 M pentobarbital, and 0.1–100 M phenazepam. Naloxone (10 M) inhibited activation of the basal Mg2+-ATPase by the studied ligands and restored the enzyme sensitivity to Cl. However, the effect of naloxone was not observed in the presence of high concentrations of pentobarbital (500 M) and phenazepam (100 M). The obtained data show that naloxone modulates the activity of Cl-activated Mg2+-ATPase from the plasma membranes of bream brain and antagonizes the GABAa receptor ligands.  相似文献   

19.
Effects of GABA, glycine, acetylcholine, and glutamate (agonists of the GABAa/benzodiazepine, glycine, choline, and glutamate receptors, respectively) at concentrations in the range 10–8-10–4 M on the activity of basal Mg2+-ATPase of the plasma membrane fraction from bream brain and on its activation by Cl were investigated. GABA and glycine activated basal Mg2+-ATPase activity and suppressed its activation by Cl. Acetylcholine and glutamate activated basal Mg2+-ATPase to a lesser extent and did not suppress the activation of the enzyme by Cl.The activation of basal Mg2+-ATPase by neuromediators was decreased by blockers of the corresponding receptors (picrotoxin, strychnine, benztropine mesylate, and D-2-amino-5-phosphonovaleric acid). In addition, picrotoxin and strychnine eliminated the inhibiting effect of GABA and glycine, respectively, on the Cl-stimulated Mg2+-ATPase activity. Agonists of the GABAa/benzodiazepine receptor–phenazepam (10–8-10–4 M) and pentobarbital (10–6-10–3 M)–activated the basal Mg2+-ATPase activity and decreased the Cl-stimulated Mg2+-ATPase activity. The dependence of both enzyme activities on ligand concentration is bell-shaped. Moreover, phenazepam and pentobarbital increased the basal Mg2+-ATPase activity in the presence of 10–7 M GABA and did not influence it in the presence of 10–4 M GABA and 10–6 M glycine. The data suggest that in the fish brain membranes the Cl-stimulated Mg2+-ATPase interacts with GABAa/benzodiazepine and glycine receptors but not with m-choline and glutamate receptors.  相似文献   

20.
Anions modify the response of guard-cell anion channels to auxin   总被引:4,自引:0,他引:4  
G. Lohse  R. Hedrich 《Planta》1995,197(3):546-552
The anion channel in the guard-cell plasma membrane of Vicia faba, GCAC1, possesses recognition sites for the plant growth hormone auxin at the extracellular mouth of the channel (Marten et al. 1991, Nature 353:759-762). Using the patch-clamp technique we could demonstrate that auxins induced a shift of the voltage dependence of the anion channel to hyperpolarized potentials; the shift was attenuated during an increase in the extracellular chloride concentration, indicating that chloride shields the hormone-binding site. The auxin-induced shift was concentration-dependent, characterized by a Michaelis-Menten type of behaviour with a half saturation constant (K m) of about 10 M naphthalene-1-acetic acid (1-NAA) in the presence of 2 mM Cl and 12 M in 80 mM Cl. In the presence of malate, another gating modulator of GCAC1, auxins were less effective, indicating that both ligands compete for common sites. Inactive auxins with respect to stomatal opening or stimulation of the plasma membrane H+-ATPase, such as 2-NAA, modulated the activation threshold and kinetics of GCAC1 similar to the active form 1-NAA. At a concentration of 100 M 2-NAA the peak-current potential shifted by about 30 mV more negative.Abbreviations GCAC1 guard cell anion channel 1 - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - TEA tetraethylammonium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号