首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The activation of yeast enolase by cobaltous ion in 0.1 M KCl is characterized by an activation constant of 1 microM and an inhibition constant of 18 microM. Measurements of binding of Co2+ to the apoenzyme show that a maximum of four Co2+ ions are bound per dimer in the presence or absence of substrate although binding is far tighter in the presence of substrate. Ultraviolet spectral titrations show evidence for a conformational change due exclusively to the binding of the first two ions of Co2+. Both visible and EPR spectra confirm that the environment of the first pair of cobalt ions ("conformational sites") is markedly different from that of the second pair in the "catalytic" sites. Cobalt at the conformational site appears to be a tetragonally distorted octahedral complex while the second pair of metal ions appears to be in a more regular tetrahedral symmetry. Addition of either Mg2+ or substrate to the enzyme with only one pair of cobalt ions per dimer causes striking changes in the metal ion environment. The conformational metal sites appear sufficiently shielded from solvent to be inaccessible to oxidation by H2O2, in contrast to the second pair of cobaltous ions whose ready oxidation by H2O2 inactivates the enzyme. Comparison of kinetic and binding data suggests that only one site of the dimeric enzyme can be active, since activity requires more than two metals bound per dimer and inactivation results from the binding of the fourth ion per dimer.  相似文献   

2.
Certain divalent cations can inhibit yeast enolase by binding at sites that are distinct from those metal binding sites normally associated with catalytic activity, i.e., the conformational and catalytic binding sites. By using a buffer that does not compete with metal ions (tetrapropylammonium borate) Zn, Co, Mn, Cu, Cd, and Ni are found to exhibit similar inhibitory characteristics. Inhibition by those metals is alleviated by the addition of imidazole or tris buffer and, for zinc, by a metal chelating agent (Calcein). Inhibition by zinc was examined in detail through binding studies and enzymatic activity measurement. In tetrapropylammonium buffers at pH 8.0, enolase binds up to four moles of zinc per mole of enzyme (two moles per subunit). An imidazole concentration of 0.05 M reduces the binding: in the absence of substrate, just two moles of zinc per enzyme are bound. The enzyme will bind two additional moles of zinc upon the addition of substrate in either buffer, but the enzyme in tetrapropylammonium buffer is nearly inactive. Inhibition is, therefore, correlated with the binding of two moles of zinc per mole of enzyme. Some additional metal ions, Ca, Tb, Hg, and Ag also caused inhibition of yeast enolase but not by binding to the inhibitory site described.  相似文献   

3.
Human liver arginase (L-arginine amidinohydrolase, EC 3.5.3.1) was immobilised by attachment to nylon with glutaraldehyde as a crosslinking agent. Incubation of the immobilised tetrameric enzyme with EDTA followed by dialysis resulted in the dissociation of the enzyme into inactive matrix-bound and solubilised subunits. Both species recovered enzymatic activity after incubation with Mn2+, and the activity of the reactivated matrix-bound subunits was nearly 25% of that shown by the enzyme initially attached to the support in the tetrameric form. When the reactivated bound subunits were incubated with soluble subunits in the presence of Mn2+, they 'picked-up' from the solution an amount of protein and enzymatic activity almost identical to that initially lost by the immobilised tetramer after the dissociating treatment with EDTA. This occurred only in the presence of Mn2+. It is suggested that the reactivation of the subunits of arginase involves the initial formation of an active monomer, which then acquires a conformation that favours a reassociation to the tetrameric state.  相似文献   

4.
A J Sytkowski  B L Vallee 《Biochemistry》1978,17(14):2850-2857
The preparation of metal hybrid species of horse liver alcohol dehydrogenase is made possible by the development of carefully delineated systems of metal in equilibrium metal exchange employing equilibrium dialysis. The conditions which are optimal for the site-specific replacement of the catalytic and/or noncatalytic zinc atoms of the native enzyme by cobalt are not identical with those which are utilized for substitution with 65Zn. Thus, while certain 65Zn hybrids can be prepared by exploiting the differential effects of buffer anions, the cobalt hybrids are generated by critical adjustments in the pH of the dialysate. Factors which may determine the mechanism of metal replacement reactions include acid-assisted, ligand-assisted, and metal-assisted dechelation, steric restriction, and ligand denticity as well as physicochemical properties of the enzyme itself. The spectral characteristics of the catalytic and noncatalytic cobalt atoms reflect both the geometry of the coordination complexes and the nature of the ligands and serve as sensitive probes of these loci in the enzyme.  相似文献   

5.
Porter TN  Li Y  Raushel FM 《Biochemistry》2004,43(51):16285-16292
Dihydroorotase (DHO) is a zinc metalloenzyme that functions in the pathway for the biosynthesis of pyrimidine nucleotides by catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate. A chemical mechanism was proposed on the basis of an analysis of the effects of pH, metal substitution, solvent isotope effects, mutant proteins, and alternative substrates on the enzyme-catalyzed reaction. The pH-rate profiles for the hydrolysis of dihydroorotate or thiodihydroorotate demonstrated that a single group from the enzyme must be unprotonated for maximal catalytic activity. Conversely, the pH-rate profiles for the condensation of carbamoyl aspartate to dihydroorotate showed that a single group from the enzyme must be protonated for maximal catalytic activity. The native zinc ions within the active site of DHO were substituted with cobalt or cadmium by reconstitution of the apoenzyme with divalent cations in the presence of bicarbonate. The ionizations observed in the pH-rate profiles were dependent on the specific metal ion bound to the active site. Mutation of the residue (Asp-250) that hydrogen bonds to the bridging hydroxide (or water) resulted in the loss of catalytic activity. These results are consistent with the formation of a hydroxide bridge between the two divalent cations that functions as the nucleophile during the hydrolysis of dihydroorotate. In addition, Asp-250 is postulated to shuttle the proton from the bridging hydroxide to the leaving group amide during hydrolysis of dihydroorotate. The X-ray crystal structure of DHO showed that the exocyclic alpha-carboxylate of dihydroorotate is bound to the protein via electrostatic interactions with Arg-20, Asn-44, and His-254. Mutation of these residues resulted in the loss of catalytic activity, indicating that these residues are critical for substrate recognition. The thio analogue of dihydroorotate was found to be a good substrate of the enzyme. A comprehensive chemical mechanism for DHO was proposed on the basis of the experimental findings in this study and the X-ray crystal structure.  相似文献   

6.
Kinetic evidence is presented that introduces a new possibility for a mechanism of metal removal from a protein by a chelator. Astacus protease is a 22,614 dalton zinc-metalloendopeptidase from the digestive tract of the freshwater crayfish. Recent studies have shown that it contains a single zinc atom and that removal of this metal yields inactive apo-enzyme, which can be reactivated upon readdition of zinc, cobalt, or copper. The enzyme is inactivated by metal chelators in a time and concentration dependent manner. The inactivation of Zn-Astacus protease by 1,10-phenanthroline (OP) can be monitored continuously in the presence of substrate. The concentration of substrate was found to have no effect on the inactivation rate, indicating that the chelator binding during inactivation is of the noncompetitive type. First-order rate constants for the inactivation process are seen to depend on the concentration of chelator in a sigmoidal manner. Based on mathematics analogous to that for cooperativity in enzyme-substrate kinetics, the deduction is made that there are two OP binding sites on the protein and that the rate of inactivation is related to the saturation of both sites with ligand. If one uses this model, the limiting rate constant of inactivation upon saturation of both sites with ligand is 6.76 x 10(-3) sec-1, and the half maximal rate occurs at an OP concentration of 6.52 mM. A mechanism is proposed wherein both protein bound chelators can cooperate during metal removal either by direct chelation of the metal or by allosteric means. The proposed model and the noncompetitive binding of chelator and substrate are discussed in relation to a recently proposed metal binding site.  相似文献   

7.
The complex between active site-specific metal-depleted horse liver alcohol dehydrogenase and NADH has been studied with X-ray crystallographic methods to 2.9 A resolution. The electron density maps revealed that only the catalytic zinc ions are removed, whereas the non-catalytic zinc sites ae fully occupied. A gross conformational change in the protein induced by co-enzyme binding takes place in this enzyme species despite the absence of the metal ion in the catalytic center. This circumstance is of great importance in the understanding and further analysis of the trigger mechanisms operating during the conformation transition in alcohol dehydrogenase, since the catalytic center is located at the hinge region for a domain rotation in the subunit, and the metal atom is essential for catalysis. The overall protein structure is the same as that of an NADH complex of the native zinc enzyme and the co-enzyme is bound in a similar manner. The local structural changes observed are restricted to the empty metal binding site.  相似文献   

8.
Badarau A  Page MI 《Biochemistry》2006,45(36):11012-11020
Metallo-beta-lactamases are native zinc enzymes that catalyze the hydrolysis of beta-lactam antibiotics but are also able to function with cobalt (II) and require one or two metal ions for catalytic activity. The kinetics of the hydrolysis of benzylpenicillin catalyzed by cobalt substituted beta-lactamase from Bacillus cereus (BcII) are biphasic. The dependence of enzyme activity on pH and metal-ion concentration indicates that only the di-cobalt enzyme is catalytically active. A mono-cobalt enzyme species is formed during the catalytic cycle, which is virtually inactive and requires the association of another cobalt ion for turnover. Two intermediates with different metal to enzyme stoichiometries are formed on a branched reaction pathway. The di-cobalt enzyme intermediate is responsible for the direct catalytic route, which is pH-independent between 5.5 and 9.5 but is also able to slowly lose one bound cobalt ion via the branching route to give the mono-cobalt inactive enzyme intermediate. This inactivation pathway of metal-ion dissociation occurs by both an acid catalyzed and a pH-independent reaction, which is dependent on the presence of an enzyme residue of pK(a) = 8.9 +/- 0.1 in its protonated form and shows a large kinetic solvent isotope effect (H(2)O/D(2)O) of 5.2 +/- 0.5, indicative of a rate-limiting proton transfer. The pseudo first-order rate constant to regenerate the di-cobalt beta-lactamase from the mono-cobalt enzyme intermediate has a first-order dependence on cobalt-ion concentration in the pH range 5.5-9.5. The second-order rate constant for metal-ion association is dependent on two groups of pK(a) 6.32 +/- 0.1 and 7.47 +/- 0.1 being in their deprotonated basic forms and one group of pK(a) 9.48 +/- 0.1 being in its protonated form.  相似文献   

9.
Substitution of the two rapidly exchanging zinc atoms of liver alcohol dehydrogenase by cobalt is biphasic; replacement by the first cobalt occurs at a rate (t12 = 15 minutes) approximately ten times faster than substitution by the second cobalt atom. The hybrid enzyme containing one gram atom of cobalt has a characteristic visible absorption spectrum which is not perturbed by NADH or 1,10-phenanthroline. The fluorescence of NADH or ε-NAD bound to the hybrid is not quenched. These data indicate a previously unrecognized heterogeneity in the rapidly exchanging zinc atoms; one of the exchange labile zinc atoms is located at a structural metal binding site rather than an active site.  相似文献   

10.
1. Spectroscopic methods for protein and active-site determination with the same sample of immobilised horse liver alcohol dehydrogenase have been developed. 2. The influence of pH, active-site protection of the soluble enzyme and protein concentration on coupling of alcohol dehydrogenase with cyanogen-bromide-activated Sepharose has been investigated. In phosphate buffer (pH 8.0) products with over 90% active-site retention have been synthesized. The binary complex alcohol-dehydrogenase . NADH gives a preparation with the same active-site content but a lower apparent specific activity compared to the unprotected enzyme. Increase in protein concentration yields products with the same active-site content relative to bound protein but the apparent specific activity is decreased. 3. The great similarity in spectroscopic properties of soluble and immobilised enzyme, as well as of their ternary complexes, shows that no significant conformational change has taken place during immobilisation. 4. Exchange of the non-catalytic Zn2+ against Co2+ yields a hybrid Sepharose--Co2Zn2-alcohol-dehydrogenase with over 90% active-site retention during metal exchange. The absorption spectra of the soluble and immobilised hybrid are identical.  相似文献   

11.
The two alcohol dehydrogenases found in Zymomonas mobilis have each been purified using dye-ligand chromatography and affinity elution with nucleotides. The isoenzyme with lower electrophoretic mobility (ZADH-1) is a zinc enzyme with properties essentially similar to preparations described elsewhere. The faster isoenzyme (ZADH-2) accounted for some 90% of the ethanol-oxidizing activity in freshly prepared extracts and corresponded to the iron-activated enzyme previously described. This enzyme was inactivated by zinc; activity could only be retained during purification by including either ferrous ions or cobaltous ions in the buffers. ZADH-2 has relatively low acetaldehyde reductase activity; consequently ZADH-1 is responsible for about half of the physiological activity (acetaldehyde reduction) in Zymomonas cells. Kinetic studies showed that ZADH-2 is activated by ethanol in both reaction directions; a hypothesis for the mechanism of activation is presented. Metal ion analyses of ZADH-2 prepared in the presence of iron or cobalt indicated one atom of the relevant metal per subunit, with no significant zinc content. N-terminal sequence analyses showed that the ZADH-1 has some homology with the Bacillus stearothermophilus enzyme, whereas ZADH-2 resembles the yeast enzyme more closely.  相似文献   

12.
Staphylococcus aureus aminopeptidase S (AmpS) has been named for its predicted, but experimentally untested, aminopeptidase activity. The enzyme is homologous to biochemically characterized aminopeptidases that contain two cobalt or zinc ions in their active centers, but it is unrelated to all structurally characterized metallopeptidases. Here, we demonstrate AmpS aminopeptidase activity experimentally, and we present the 1.8-A crystal structure of the enzyme. Two metal ions with full occupancy and a third metal ion with low occupancy are present in the active site. A water molecule and Glu-319 serve as bridging ligands to the two metals with full occupancy. One of these metal ions is additionally coordinated by Glu-253 and His-348 and the other by His-381 and Asp-383. In addition, the metals are involved in weak metal-donor interactions to a water molecule and to Tyr-355. In the crystal, AmpS forms a dimer with a large internal cavity. The active sites are located at opposite ends of this internal cavity and are essentially inaccessible from the outside, suggesting that an inactive conformation was crystallized. Because gel filtration and analytical ultracentrifugation data also suggest dimer formation, the problem of substrate access to the active site cavity remains unresolved.  相似文献   

13.
J A Hunt  M Ahmed  C A Fierke 《Biochemistry》1999,38(28):9054-9062
The role of highly conserved aromatic residues surrounding the zinc binding site of human carbonic anhydrase II (CAII) in determining the metal ion binding specificity of this enzyme has been examined by mutagenesis. Residues F93, F95, and W97 are located along a beta-strand containing two residues that coordinate zinc, H94 and H96, and these aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitutions of these aromatic amino acids with smaller side chains enhance the copper affinity (up to 100-fold) while decreasing the affinity of both cobalt and zinc, thereby altering the metal binding specificity up to 10(4)-fold. Furthermore, the free energy of the stability of native CAII, determined by solvent-induced denaturation, correlates positively with increased hydrophobicity of the amino acids at positions 93, 95, and 97 as well as with cobalt and zinc affinity. Conversely, increased copper affinity correlates with decreased protein stability. Zinc specificity is therefore enhanced by formation of the native enzyme structure. These data suggest that the hydrophobic cluster in CAII is important for orienting the histidine residues to stabilize metals bound with a distorted tetrahedral geometry and to destabilize the trigonal bipyramidal geometry of bound copper. Knowledge of the structural factors that lead to high metal ion specificity will aid in the design of metal ion biosensors and de novo catalytic sites.  相似文献   

14.
The neutral protease of Bacillus amylosacchariticus was inactivated by low concentrations of several metal-chelating agents and the inactivated enzyme with EDTA restored its activity almost completely by the addition of Zn++ or Co++ and partially by Fe++ or Mn++, if these metal ions were added shortly after the EDTA-treatment. The native enzyme was found to contain 0.19% of zinc together with a significant amount of calcium. Parallel increase in specific activity and zinc content of enzyme preparation was observed throughout the purification procedure. The elution pattern of enzyme activity on a CM-cellulose column chromatography also completely coincided with that of protein-bound zinc. A zinc-free inactive enzyme was also reactivated by the addition of zinc or cobalt ions, clearly showing that the neutral protease of B. amylosacchariticus is a zinc mctalloenzyme.  相似文献   

15.
Full substitution of Cu(II) or Ni(II) for the two g-atom zinc in Aeromonas aminopeptidase hyperactivates the enzyme 6.5 and 25 fold respectively. Even greater enhancements of activity can be achieved with mixed metal substitutions. Thus, apoenzyme reactivated by first adding one g-atom zinc followed by one g-atom of either Cu(II) or Ni(II) is 15 and 22 times more active than the native enzyme. Reversing the order, i.e. by first adding either one g-atom Cu(II) or Ni(II) followed by one g-atom zinc, activates the enzyme nearly 100 fold. The order of metal addition is critical and suggests the existence of two non-identical metal sites, each with a different function.  相似文献   

16.
In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes.  相似文献   

17.
The matrix of yeast mitochondria contains a chelator-sensitive protease that removes matrix-targeting signals from most precursor proteins transported into this compartment. The enzyme consists of two nonidentical subunits that are encoded by the nuclear genes MAS1 and MAS2. With the aid of these cloned genes, we have now overexpressed the active holoenzyme in yeast, purified it in milligram amounts, and studied its biochemical and physical properties. Atomic absorption analysis shows that the purified enzyme lacks significant amounts of zinc, manganese, or cobalt; if none of these metal ions is added during the assay, the enzyme is catalytically inactive but can still cleave substoichiometric amounts of substrate. The amino-terminal sequences of the two mature subunits were determined; comparison with the deduced amino acid sequences of the corresponding precursors revealed that the MAS1 and MAS2 subunits are synthesized with prepeptides composed of 19 and 13 residues, respectively, which have similar sequences. The enzyme is inhibited competitively by chemically synthesized matrix-targeting peptides; the degree of inhibition correlates with the peptides' targeting efficacy. Matrix-targeting peptides containing the cleavage site of the corresponding authentic precursor protein are cleaved correctly by the purified enzyme. A purified artificial precursor protein bound to the holoenzyme can be photocross-linked to the MAS2 subunit.  相似文献   

18.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

19.
The psychrophilic alkaline metalloprotease (PAP) produced by a Pseudomonas bacterium isolated in Antarctica belongs to the clan of metzincins, for which a zinc ion is essential for catalytic activity. Binding studies in the crystalline state have been performed by X-ray crystallography in order to improve the understanding of the role of the zinc and calcium ions bound to this protease. Cocrystallization and soaking experiments with EDTA in a concentration range from 1 to 85 mM have resulted in five three-dimensional structures with a distinct number of metal ions occupying the ion-binding sites. Evolution of the structural changes observed in the vicinity of each cation-binding site has been studied as a function of the concentration of EDTA, as well as of time, in the presence of the chelator. Among others, we have found that the catalytic zinc ion was the first ion to be chelated, ahead of a weakly bound calcium ion (Ca 700) exclusive to the psychrophilic enzyme. Upon removal of the catalytic zinc ion, the side chains of the active-site residues His-173, His-179 and Tyr-209 shifted approximately 4, 1.0, and 1.6 A, respectively. Our studies confirm and also explain the sensitivity of PAP toward moderate EDTA concentrations and propose distinct roles for the calcium ions. A new crystal form of native PAP validates our previous predictions regarding the adaptation of this enzyme to cold environments as well as the proteolytic domain calcium ion being exclusive for PAP independent of crystallization conditions.  相似文献   

20.
Peptidoglycan deacetlyase (HP0310, HpPgdA) from the gram‐negative pathogen Helicobacter pylori, is the enzyme responsible for a peptidoglycan modification that counteracts the host immune response. In a recent study, we determined the crystallographic structure of the enzyme, which is a homo‐tetramer (Shaik et al., PloS One 2011;6:e19207). The metal‐binding site, which is essential for the enzyme's catalytic activity, is visible within the structure, but we were unable to identify the nature of the metal itself. In this study, we have obtained a higher‐resolution crystal structure of the enzyme, which shows that the ion bound is, in fact, zinc. Analysis of the structure of the four sites, one per monomer, and quantum chemical calculations of models of the site in the presence of different divalent metal ions show an intrinsic preference for zinc, but also significant flexibility of the site so that binding of other ions can eventually occur. Proteins 2014; 82:1311–1318. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号