首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A PCR method involving a genus-specific oligonucleotides set and Southern blot hybridization with four species-specific probes to P. falciparum, P. vivax, P. malariae and P. ovale was evaluated for the detection of malaria parasites in blood samples from 101 patients with clinically suspect malaria infection imported to Italy. Plasmodium falciparum was the main species detected. As determined by microscopy, 53 (52.4%) patients had malaria and of these: 40 (75.5%) were infected with P. falciparum; 7 (13.2%) with P. vivax; 1 (1.9%) with P. ovale; 3 (5.7%) with P. malariae; 1 (1.9%) with P. vivax or P. ovale; and 1 (1.9%) with P. falciparum or P. vivax. Ninety-seven out 101 blood samples were submitted to ParaSight-F test which showed a sensitivity of 94.73%, and a specificity of 93.22%, as compared to microscopy. The PCR assay using the genus-specific oligonucleotide primer set (pg-PCR) was able to detect 53 (52.4%) infections and showed a sensitivity of 100% and a specificity of 100%, when compared to microscopy. The parasite species were identified by Southern blot hybridization using species-specific probes and 40 (75.5%) samples were P. falciparum positive, 5 (9.4%) P. vivax positive, 4 (7.5%) P. ovale positive, and 2 (3.8%) P. malariae positive. When the Southern blot results were compared to those of blood-film diagnosis, we observed some disagreement. In particular, compared to Southern blot, microscopy underestimated P. ovale infection; blood film analysis recognised only 1 P. ovale sample, whereas Southern blot recognised 4 P. ovale positive samples (by microscopy, 2 of these were detected as P. vivax, 1 as P. ovale or P. vivax, and the other as P. falciparum or P. vivax). Southern blot hybridization was unable to identify one P. falciparum and one P. vivax positive case detected by microscopy. We also plan to use a reference nested-PCR assay to clarify the disagreement observed between microscopy and Southern blot hybridization.  相似文献   

2.
Plasmodium malariae and Plasmodium ovale--the "bashful" malaria parasites   总被引:1,自引:0,他引:1  
Although Plasmodium malariae was first described as an infectious disease of humans by Golgi in 1886 and Plasmodium ovale identified by Stevens in 1922, there are still large gaps in our knowledge of the importance of these infections as causes of malaria in different parts of the world. They have traditionally been thought of as mild illnesses that are caused by rare and, in case of P. ovale, short-lived parasites. However, recent advances in sensitive PCR diagnosis are causing a re-evaluation of this assumption. Low-level infection seems to be common across malaria-endemic areas, often as complex mixed infections. The potential interactions of P. malariae and P. ovale with Plasmodium falciparum and Plasmodium vivax might explain some basic questions of malaria epidemiology, and understanding these interactions could have an important influence on the deployment of interventions such as malaria vaccines.  相似文献   

3.
Unusual plasmodium malariae-like parasites in southeast Asia   总被引:2,自引:0,他引:2  
During malaria surveys in Myanmar, 2 peculiar forms of Plasmodium malariae-like parasites were found. The morphologies of their early trophozoite stages were distinct from that of the typical P. malariae, resembling instead that of Plasmodium vivax, var. minuta, reported by Emin, and Plasmodium tenue, reported by Stephens, both in 1914. Two polymerase chain reaction (PCR)-based diagnoses, which target the same regions in the small subunit ribosomal RNA (SSUrRNA) genes, indicated that these parasites were new variant forms of P. malariae and that they could be separated into 2 genetic types that correlated with the 2 morphological types. Sequence analysis of the SSUrRNA and the circumsporozoite protein genes revealed that they were distinct both from each other and from other known P. malariae isolates and that the P. tenue-like type was closer to a monkey quartan malaria parasite, Plasmodium brasilianum. These results illustrate that the microscopic appearance of human P. malariae parasites may be more varied than previously assumed and suggest the value of molecular tools in the evaluation of malaria morphological variants.  相似文献   

4.
BACKGROUND: Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. METHODOLOGY AND SIGNIFICANT FINDINGS: We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. CONCLUSIONS: The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi.  相似文献   

5.
We analyzed point-prevalence data from 19 recent studies of human populations in which either Plasmodium ovale or Plasmodium vivax co-occur with Plasmodium falciparum and Plasmodium malariae. Although the only statistical interactions among, sympatric congeners are pairwise, the frequencies of mixed-species infections relative to standard hypotheses of species sampling independence show no strong relation to overall malaria prevalence. The striking difference between the P. falciparum-P. malariae-P. ovale and the P. falciparum-P. malariae-P. vivax data is that the first typically shows a statistical surplus of mixed-species infections and the second a deficit. This suggests that the number of Plasmodium species present in a human population may be less important in determining the frequencies of mixed-species infections than is the identity of those species.  相似文献   

6.
Gametocytemia and fever in human malaria infections   总被引:2,自引:0,他引:2  
We examine the charts of 408 malaria-naive neurosyphilis patients given malaria therapy at the South Carolina USPHS facility, with daily records encompassing at least 93% of the duration of infection, and focus on the 152 patients infected with the St. Elizabeth strain of Plasmodium vivax, 82 with the McLendon strain of Plasmodium filciparum, 36 with the USPHS strain of Plasmodium malariae, and 15 with the Donaldson strain of Plasmodium ovale in whom gametocytes appeared before drug, or other, intervention. In P. vivax infections, fever and parasitemia were higher after gametocytes were first detected than before; in P. malariae infections, parasitemia was higher. In P. ovale infections, fever and parasitemia were similar before and after. In P. falciparum infections, fever, parasitemia, and fever frequency were lower after gametocytes were first detected than before. Parasitemia and temperature correlated in P. vivax infections, before and after gametocytes were first detected; parasitemia and temperature at first fever were not correlated in infections with any species. Gametocyte density correlated with parasitemia in P. malariae and sporozoite-induced P. falciparum and P. vivax infections. Fevers and detected gametocytemia coincided more often than expected by chance with P. vivax and P. ovale; fever temperature and gametocyte density were not correlated in infections with any species.  相似文献   

7.
We report an exceptional finding from a blood slide collected in a remote area in the western half of New Guinea Island (Irian Jaya Province, Indonesia). One adolescent patient was found patently coinfected with all 4 known human malaria species, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Diagnostic erythrocytic stages of all 4 species were clearly seen in the peripheral blood. A nested polymerase chain reaction, using species-specific primer pairs to detect DNA, helped substantiate this finding. Previous reports from Africa, Thailand, and New Guinea have detected all 4 species in a population but not simultaneously in an individual with a patent, microscopically detectable infection. We believe this quadruple infection represents the first reported natural case of all 4 human malaria parasites observed concurrently in the peripheral blood from a single Giemsa-stained slide.  相似文献   

8.
BACKGROUND: A survey of malaria antibodies was carried out over 7 years and a total of 777 serum samples from wild monkeys were collected in three distinct ecological areas of Brazil where autochthonous malaria has been reported: the 'Cerrado' (similar to savanna), the Atlantic Forest and the Atlantic Semideciduous Forest. METHODS: We carried out enzyme-linked immunosorbent assay to investigate the presence of IgG antibodies against peptides of the circumsporozoite protein (CSP) repeat region of 'classic'Plasmodium vivax, P. vivax VK247, human P. vivax-like/P. simiovale, P. brasilianum/P. malariae and P. falciparum. We also carried out immunofluorescence assay with asexual forms of P. vivax, P. malariae and P. falciparum. RESULTS: The high prevalence of antibodies against CSP in all areas indicates that the monkeys had intense contact with sporozoites from infected anophelines. The immune response against asexual forms of Plasmodium in the monkeys from the Atlantic Forest indicates the development of the infection. CONCLUSIONS: We discuss the possibility of monkeys being malaria reservoirs in non-endemic areas.  相似文献   

9.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   

10.
Parasite lactate dehydrogenase (pLDH) is a potential drug target for new antimalarials owing to parasite dependence on glycolysis for ATP production. The pLDH from all four species of human malarial parasites were cloned, expressed, and analyzed for structural and kinetic properties that might be exploited for drug development. pLDH from Plasmodium vivax, malariae, and ovale exhibit 90-92% identity to pLDH from Plasmodium falciparum. Catalytic residues are identical. Resides I250 and T246, conserved in most LDH, are replaced by proline in all pLDH. The pLDH contain the same five-amino acid insert (DKEWN) in the substrate specificity loops. Within the cofactor site, pLDH from P. falciparum and P. malariae are identical, while pLDH from P. vivax and P. ovale have one substitution. Homology modeling of pLDH from P. vivax, ovale, and malariae with the crystal structure of pLDH from P. falciparum gave nearly identical structures. Nevertheless, the kinetic properties and sensitivities to inhibitors targeted to the cofactor binding site differ significantly. Michaelis constants for pyruvate and lactate differ 8-9-fold; Michaelis constants for NADH, NAD(+), and the NAD(+) analogue 3-acetylpyridine adenine dinucleotide differ up to 4-fold. Dissociation constants for the inhibitors differ up to 21-fold. Molecular docking studies of the binding of the inhibitors to the cofactor sites of all four pLDH predict similar orientations, with the docked ligands positioned at the nicotinamide end of the cofactor site. pH studies indicate that inhibitor binding is independent of pH in the pH 6-8 range, suggesting that differences in dissociation constants for a specific inhibitor are not due to altered active site pK values among the four pLDH.  相似文献   

11.
Evolutionary relatedness of some primate models of Plasmodium   总被引:1,自引:0,他引:1  
Primate--and, specifically, monkey--malaria infections are commonly used for understanding the pathology of and immune response to the human disease because they are thought to resemble most closely the host-parasite relationship found in humans. Plasmodium cynomolgi is used extensively as a model for the human parasite, P. vivax, and P. knowlesi is used primarily as a model for the development of erythrocytic-stage vaccines. Both of these simian parasites can naturally infect man, resulting in mildly symptomatic episodes of the disease. The phylogenetic relationship between these two simian parasites and previously characterized Plasmodium species, including P. vivax, was examined by comparison of the asexually expressed small- subunit ribosomal RNA genes. Our analysis confirmed that P. vivax is most closely related to P. cynomolgi and that it remains an appropriate model of the human pathogen. Furthermore, with P. knowlesi and P. fragile, these two species form a group of closely related species, distant from other Plasmodium species. What is considered to be the most ancient of the human malaria pathogens, P. malariae, was also included in the analysis and does not group at all with other simian or human parasites.   相似文献   

12.
The present study evaluates the sensitivity, specificity and usefulness of a PCR method with Southern blot hybridization to detect malaria parasites in blood samples from subjects with a suspect clinical diagnosis of malaria imported to Italy. Plasmodia were detected by PCR using a genus-specific primer-set corresponding to the sequences common to P. falciparum, P. vivax, P. malariae and P. ovale, as described by Arai (Arai et al., Nucleosides Nucleotides, 1994, 13, 1363-1364) and Kimura (Kimura et al., Journal of Clinical Microbiology, 1995, 33, 2342-2346). In addition, four distinct tandemly repetitive species-specific probes, described by Kawai (Kawai et al., Analytical Biochimestry, 1993, 209, 63-69), were synthesized to specifically detect the four malaria parasites species by Southern blot hybridization. Fifteen blood samples from 12 patients (7 with malaria) were tested and the genus-specific PCR method showed a sensitivity of 100% and a specificity of 100%, when compared to microscopy, in detecting malaria parasites in the tested blood samples. Fourteen samples (nine were positive and five negative by PCR) were confirmed by Southern blot, whereas only one P. vivax positive sample was not hybridized with the species-specific probes. We conclude that this PCR method with Southern blot hybridization may be useful in detecting malaria parasites in patients with malaria imported to Italy.  相似文献   

13.
Liver function tests were performed in 61 vivax, 54 malariae and 15 ovale malaria patients who were admitted to Bangkok Hospital for Tropical Diseases between 2001 and 2004. The objective of the study was to evaluate changes in hepatic biochemical indices before and after treatment with artemisinin derivatives. On admission and prior to treatment, hepatic dysfunction was found among the 3 groups. Serum liver function tests and physical examinations were performed weekly during the 28-day follow-up period. Initially elevated serum bilirubin and diminished albumin returned to normal within 2 weeks of treatment. Serum alkaline phosphatase and aminotransferases returned to within normal limits within 3 weeks. We conclude that patients with Plasmodium vivax, P. malariae and P. ovale infections had slightly elevated serum bilirubin, aminotransferase and alkaline phosphatase levels, and hypoalbuminemia. These minor abnormalities returned to normal within a few weeks after treatment with therapies based on artemisinin derivatives.  相似文献   

14.
In spite of the high prevalence of malaria in Bangladesh and other southern Asian countries, there remains a substantial shortage of knowledge about the less common human malaria parasites. Recent studies indicate that Plasmodium ovale is made up of two species, namely Plasmodium ovale wallikeri and Plasmodium ovale curtisi. Genus- and species-specific nested PCR analyses of the ssrRNA gene was used to detect P. ovale infections among 2,246 diagnostic samples. Plasmodium ovale infections were further differentiated by nested PCR of the potra gene and multilocus sequence analysis of the cox1, porbp2 and the ssrRNA genes. Both P. ovale curtisi and P. ovale wallikeri occur sympatrically in the Chittagong Hill Tracts, Bangladesh and all patients presented with a mild or asymptomatic symptom complex at the time of diagnosis. The pathogens can be differentiated by nested PCRs targeting the ssrRNA and potra genes, and display dimorphism in multilocus sequence analyses. We believe that we report the first evidence of sympatric P. ovale curtisi and P. ovale wallikeri in southern Asia within a relatively confined study area of less than 5,000 km(2). High rates of mixed infections, the emergence of "new" human malaria parasite species and the evidence of zoonotic capability call for optimised diagnostic strategies for a new era of eradication.  相似文献   

15.
Plasmodial lactate dehydrogenase, key enzyme of anaerobic glycolysis, has been shown to be a potential immunodiagnostic marker as well as a novel target for chemotherapy. We have cloned, overexpressed and immunochemically characterized the recombinant lactate dehydrogenase of Plasmodium knowlesi, the fifth human malaria parasite. The P. knowlesi lactate dehydrogenase (PkLDH) gene was PCR amplified and 0.9 kb PCR product was cloned into pGEM-T Easy vector. Sequencing and BLAST analysis revealed open reading frame of 316 amino acids of PkLDH showing 96.8% homology with Plasmodium vivax LDH and around 90% with Plasmodium falciparum, Plasmodium malariae and Plasmodium ovale LDHs. The PkLDH gene was subcloned into pGEX-6P1 expression vector and the SDS-PAGE analysis revealed that about 70% of fusion protein was present in the soluble fraction. The fusion protein was cleaved with PreScission protease and recombinant PkLDH (34 kDa) was affinity purified to homogeneity. The purified PkLDH exhibited high reactivity with polyclonal and monoclonal antibodies against plasmodial LDH. The polyclonal antibody produced against purified recombinant PkLDH in rabbits showed high ELISA reactivity with both native and recombinant PkLDH and could detect parasite LDH in malaria infected blood samples by sandwich ELISA. The purified recombinant PkLDH can be used to produce P. knowlesi specific monoclonal antibodies for specific diagnosis of P. knowlesi infection in humans.  相似文献   

16.
We have investigated the evolution of Plasmodium parasites by analyzing DNA sequences of several genes. We reach the following conclusions: (1) The four human parasites, P. falciparum, P. malariae, P. ovale, and P. vivax are very remotely related to each other, so that their evolutionary divergence predates the origin of the hominids; several of these parasites became associated with the human lineage by lateral transfer from other hosts. (2) P. falciparum diverged from P. reichenowi about 8 million years ago, consistently with the time of divergence of the human lineage from the apes; a parsimonious inference is that falciparum has been associated with humans since the origin of the hominids. (3) P. malariae is genetically indistinguishable from P. brasilianum, a parasite of New World monkeys; and, similarly. (4) P. vivax is genetically indistinguishable from the New World monkey parasite P. simium. We infer in each of these two cases a very recent lateral transfer between the human and monkey hosts, and explore alternative hypotheses about the direction of the transfer. We have also investigated the population structure of P. falciparum by analyzing 10 genes and conclude that the extant world populations of this parasite have evolved from a single strain within the last several thousand years. The extensive polymorphisms observed in the highly repetitive central region of the Csp gene, as well as the apparently very divergent two classes of alleles at the Msa-1 gene, are consistent with this conclusion.  相似文献   

17.
Plasmodium vivax and Plasmodium falciparum are the two prevalent human malaria species. A Colombian P. vivax wild strain has been adapted in Aotus nancymaae monkeys for use in further biological and immunological studies. We present data validating a real-time PCR assay quantifying P. vivax parasitemia, using the small subunit ribosomal RNA genes as an amplification target. P. vivax species-specific primers were designed on the 18S ribosomal gene V8 region, for amplifying both asexual and sporozoite ssrRNA genes. The assay detects amplification products bound to fluorescent SYBR-Green I dye using Perkin-Elmer GeneAmp-5700-SDS. Linear range standard curves from 6 DNA concentration logs (+0.99 correlation coefficients) were obtained. Standard curves were constructed using a plasmid containing target gene for real-time PCR amplification. This P. vivax specific assay is very sensitive, having a three parasite detection limit, and is reproducible and accurate. It involves a "closed-tube" PCR, avoids time-consuming post-PCR manipulation, and decreases potential PCR contamination.  相似文献   

18.
The aim of this study was to determine the prevalence of malaria infection and antibodies against the repetitive epitopes of the circumsporozoite (CS) proteins of Plasmodium falciparum, P. malariae, P. vivax VK210, P. vivax VK247, and P. vivax-like in individuals living in the states of Rond?nia, Pará, Mato Grosso, Amazonas, and Acre. Active malaria transmission was occurring in all studied sites, except in Acre. P. falciparum was the predominant species in Pará and Rond?nia and P. vivax in Mato Grosso. Infection by P. malariae was low but this Plasmodium species was detected in Rond?nia (3.5%), Mato Grosso (2.5%), and Pará (0.8%). High prevalence and levels of serological reactivity against the CS repeat peptides of P. falciparum were detected in Rond?nia (93%) and Pará (85%). Sera containing antibodies against the CS repeat of P. malariae occurred more frequently in Rond?nia (79%), Pará (76%), and Amazonas (68%). Antibodies against the repeat epitope of the standard CS protein of P. vivax VK210, P. vivax VK247, and P. vivax-like were more frequent in Rond?nia, Pará, and Mato Grosso. The high frequency of reactions to P. malariae in most of the areas suggests that the infection by this Plasmodium species has been underestimated in Brazil.  相似文献   

19.
20.
Plasmodium ovale and Plasmodium malariae, two of the four human malaria parasites, are usually found at very low prevalence in East Asia, even in areas with intense malaria transmission. In this article, Fumihiko Kawamoto, Qing Liu, Marcelo Ferreira and Indah Tantular review data obtained in recent field surveys, using alternative diagnostic methods such as acridine orange staining and PCR-based methods, to evaluate the prevalence of these two malaria species in East Asia. They argue that these species might be much more prevalent in East Asia than reported previously. In addition, they discuss the implications of sequence variations found in the small subunit ribosomal RNA genes of the two species targeted by diagnostic PCR and compare morphological criteria for speciation of malaria parasites stained with Giemsa and acridine orange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号