首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We examined how independent and interactive effects of CO2 concentrations, water supply and wind speed affect growth rates, biomass partitioning, water use efficiency, diffusive conductance and stomatal density of plants. To test the prediction that wind stress will be ameliorated by increased CO2 and/or by unrestricted water supply we grew Sinapis alba L. plants in controlled chambers under combinations of two levels of CO2 (350 ppmv, 700 ppmv), two water regimes and two wind speeds (0.3 ms–1, 3.7 ms–1). We harvested at ten different dates over a period of 60 days. A growth analysis was carried out to evaluate treatment effects on plant responses. Plants grown both in increased CO2 and in low wind conditions had significantly greater stem length, leaf area and dry weights of plant parts. Water supply significantly affected stem diameter, root weight and leaf area. CO2 enrichment significantly increased the rate of biomass accumulation and the relative ratio of biomass increase to leaf area expansion. High wind speed significantly reduced plant growth rates and the rate of leaf area expansion was reduced more than the rate of biomass accumulation. Regression analysis showed significant CO2 effects on the proportion of leaf and stem dry weight to total dry weight. A marked plant-age effect was dependent on water supply, wind speed and CO2 concentration. A reduced water supply significantly decreased the stomatal conductance, and water use efficiency significantly increased with a limited water supply, low wind and increased CO2. We found significant CO2 x wind effects for water diffusion resistance, adaxial number of stomata and water use efficiencies and significant wind x water effect for water use efficiency. In conclusion, wind stress was ameliorated by growing in unrestricted water but not by growing in increased CO2.  相似文献   

2.
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one.  相似文献   

3.
Fertilization commonly increases biomass production in loblolly pine (Pinus taeda L.). However, the sequence of short‐term physiological adjustments allowing for the establishment of leaf area and enhanced growth is not well understood. The effects of fertilization on photosynthetic parameters, root respiration, and growth for over 200 d following the application of diammonium phosphate were intensively investigated in an effort to establish a relative sequence of events associated with improved growth. Root respiration, foliar nitrogen concentration [N]f, and light‐saturated net photosynthesis (Asat) temporarily increased following fertilization. Asat was correlated positively with [N]f when non‐fertilized and fertilized treatments were pooled (R2 = 0.47). Increased photosynthetic capacity following fertilization was due to both improved photochemical efficiency and capacity and enhanced carboxylation capacity of Rubisco. Positive effects of fertilization on growth were observed shortly after Asat increased. Fertilized seedlings had 36.5% more leaf area and 36.5% greater total dry weight biomass at 211 d following fertilization. It is concluded that fertilization temporarily increased photosynthetic capacity, which resulted in a pool of photo‐assimilate used to build leaf area. The N from fertilizer initially invested in photosynthetic structures and enzymes probably re‐translocated to newly developing foliage, explaining the reduction in [N]f and Asat that was observed after peak levels were achieved following fertilization.  相似文献   

4.
The effects of varying nitrogen supply on canopy leaf area, response of leaf net photosynthesis (An) to quantum flux density (Q), and fruit yields of kiwifruit vines (Actinidia deliciosa var. deliciosa) were examined in a two-year field experiment. Vines were grown with 0, 250 or 750 kg N ha?1 year?1. The responses to nitrogen supply were compared with responses to shade, to examine the impact of reduced carbon assimilation on canopy leaf area and fruit yields. Nitrogen supply did not affect significantly any of the measured variables during the first season of the experiment. In the second season, canopy leaf area was reduced significantly where nitrogen supply was limited. The quantum efficiency of photosynthesis (φq) increased from 0. 03 mol CO2 mol?1 Q soon after leaf emergence to more than 0. 05 mol CO2 mol?1 Q during the middle of the growing season. The quantum saturated rate of An (Asat) also increased during the season, from 7–10 μmol CO2 m?2 s?1 soon after leaf emergence, to 15–20 (μmol CO2 m?2 s?1 during the middle of the growing season. φq and Asat increased significantly with nitrogen supply at all measurement times during the second season. For vines with high nitrogen, fruit yields in both seasons were similar, averaging 3. 05 kg m?2. Fruit yields in the second season were reduced significantly where nitrogen supply was limited, due to reduced fruit numbers. The relative effects of reduced leaf area and reduced leaf photosynthesis for carbon assimilation by nitrogen deficient vines were examined using a mathematical model of canopy photosynthesis for kiwifruit vines. Simulations of canopy photosynthesis indicated that effects on leaf area and on leaf photosynthesis were of similar importance in the overall effects of nitrogen deficiency on carbon assimilation. The effects of nitrogen supply on fruit numbers (i. e. flower development) preceded the measured effects on carbon assimilation, indicating that the nitrogen supply affected carbon partitioning to reserves in the first season.  相似文献   

5.
 Green pruning was used to induce source limitation in 1-year-old Eucalyptus nitens (Deane and Maiden) Maiden plants in an investigation of regulation of net CO2 assimilation (A). The pruning regimes involved removal of 0, 50% or 70% of the length of green crown, equivalent to 0, 78% or 95% of leaf area respectively. Gas exchange measurements were made on fully-expanded leaves at 80% of crown height prior to pruning, and at weekly intervals over the 8 weeks following pruning. An increase in A was observed in response to pruning a week after treatment. In 50%-pruned plants this increase in A was observed for 6 weeks, but in 70%-pruned plants it was still evident at the end of the experiment. While leaf conductance (g) increased considerably following pruning, stomatal limitation was unaffected, indicating that the most important changes in conductance of CO2 were in the mesophyll. Both carboxylation efficiency (C e ) and RuBP regeneration capacity (V j ) increased following pruning. The magnitude and duration of changes increased with pruning severity. There was evidence that A was primarily limited by V j , although in 70%-pruned plants C e may have been the main limitation early in the experiment. The response of A to low p(O2) indicated that A was not limited by rates of triose phosphate utilisation (TPU), and that, at more severe pruning levels, rates of TPU may have increased in the short term. Apparent quantim yield was unaffected by pruning, suggesting no change in the production or consumption of ATP or NADPH2. There was a negative linear relationship between A and the ratio of leaf area to above-ground dry mass, and a positive linear relationship between A and specific leaf area. Both suggested a link between rates of assimilation of the level of source limitation. The capacity of E. nitens to regulate photosynthesis in response to pruning increases the potential for maintaining a balance between assimilation and utilisation of carbon, thereby mimimising the impact of pruning on growth. However there will be a level of source limitation at which photosynthesis is limited by the rate of one or more biochemical reactions, and above which complete compensation is not possible. At such levels growth will usually be affected. In this experiment diameter growth was slightly reduced by 50%-pruning, but both height and diameter increment were substantially reduced by 70%-pruning. Received: 20 August 1997 / Accepted: 4 December 1997  相似文献   

6.
Norway spruce (NS) and Douglas-fir (DF) are among the main species used for production forestry in France. In low-elevation mountains and under-acidic conditions, they often occupy the same ecological situations. It is therefore of paramount interest to have a good understanding of how the two species behave under similar conditions and how they react to site improvement by fertilisation. The study stands are part of an experimental stand located in the estate forest of Breuil-Chenue in the Morvan (east central part of France). Its aim is to compare the impact of change in species on ecosystem functions. Destructive sampling of 10 trees per stand, distributed over the whole spectrum of inventoried classes of circumference at breast height (c 1.30), was carried out within four stands, e.g., fertilised and control (non-fertilised) NS; fertilised and control (non-fertilised) DF. Allometric relationships between c 1.30 and biomass or nutrient content per tree compartment were calculated. These equations were applied to the stand inventory for quantifying stand biomass and nutrient content on a hectare basis. The standard deviations of results were estimated using Monte-Carlo simulations. Specific emphasis was given to explain the origin of differences observed between species and treatments, i.e., changes in carbon allocation leading to specific allometric relationships, changes in stand structure (tree size distributions) and changes in stand density due to mortality.DF was more productive than NS (+28% for total tree biomass, +50% for ligneous biomass and +53% for stem wood). Both NS and DF were affected by fertilisation but in the case of NS, effects on the crown_c 1.30 relationship and on average tree growth were predominant while in the case of DF, the stem_c 1.30 relationship and stand density were affected by changes in soil fertility. The general fertilisation effect was an increment of 40% of ligneous dry matter for DF and only 22% for NS. In both cases, the amount of wood biomass produced per unit of leaf biomass (on a tree basis and, to a lesser extent, on a per hectare basis) was greater in fertilised plots. However, in the case of NS, the same amount of wood biomass was produced from a smaller quantity of leaves while in the case of DF, the same amount of leaves produced more wood biomass.The amount of nutrients in total ligneous biomass was higher for N, P and K, but lower for Ca and Mg, in DF than in NS. A high variability was observed between nutrient content of the different compartments, e.g., DF < NS for needles (except Mg), DF < NS for K, Ca and Mg for stem wood and DF > NS for N and P of stem wood. Fertilisation did not considerably change the hierarchy. On the basis of this study, all the indexes concerning stand production, wood density, nutrient use efficiency and response to fertilisation gave a net advantage to DF. This information is highly relevant for both ecological and practical purposes.  相似文献   

7.
We investigated leaf and shoot architecture in relation to growth irradiance (Qint) in young and mature trees of a New Zealand native gymnosperm Agathis australis (D. Don) Lindl. to determine tree size-dependent and age-dependent controls on light interception efficiency. A binomial 3-D turbid medium model was constructed to distinguish between differences in shoot light interception efficiency due to variations in leaf area density, angular distribution and leaf aggregation. Because of the positive effect of light on leaf dry mass per area (MA), nitrogen content per area (NA) increased with increasing irradiance in both young and mature trees. At a common irradiance, NA, MA and the components of MA, density and thickness, were larger in mature trees, indicating a greater accumulation of photosynthetic biomass per unit area, but also a larger fraction of support biomass in older trees. In both young and mature trees, shoot inclination angle relative to horizontal, and leaf number per unit stem length decreased, and silhouette to total leaf area ratio (SS) increased with decreasing irradiance, demonstrating more efficient light harvesting in low light. The shoots of young trees were more horizontal and less densely leafed with a larger SS than those of mature trees, signifying greater light interception efficiency in young plants. Superior light harvesting in young trees resulted from more planar leaf arrangement and less clumped foliage. These results suggest that the age-dependent and/or size-dependent decreases in stand productivity may partly result from reduced light interception efficiency in larger mature relative to smaller and younger plants.  相似文献   

8.
光照和氮磷供应比对木荷生长及化学计量特征的影响   总被引:1,自引:0,他引:1  
熊静  虞木奎  成向荣  汪成  邹汉鲁 《生态学报》2021,41(6):2140-2150
光照和养分限制是影响林下植物生长和更新的关键影响因素,以亚热带主要常绿树种木荷(Schima superba)实生幼苗为试验对象,研究了不同光照(全光照、遮阴即45%全光照)和N、P供应比例(5,15,45)对幼苗生长和化学计量特征的影响。结果表明:(1)遮阴不仅严重抑制了木荷各器官和单株生物量积累,更加剧了P限制。尽管N、P添加对木荷生长没有显著促进作用,但N、P供应比例为5时的性状组合更有利于木荷后期生长,但高N、P供应比例可能导致P限制。(2)遮阴下叶N、P含量显著增加,但叶C/N和C/P比显著降低;不同光照处理组中各器官及总N含量均随N、P供应比例增大而显著增加,而C/N比逐渐降低;P的分配格局发生改变,全光照组各器官P含量为茎 > 叶 > 根,遮阴组各器官P含量为根 > 茎 > 叶。(3)随N、P供应比例增加或光照强度降低,木荷均趋向降低根冠比和根质比、增加叶质比或茎质比。(4)木荷生物量与各器官N、P含量、叶质比呈极显著负相关,而与C/N和C/P比及根冠比、茎质比、根质比呈极显著正相关。光强和N、P比例变化均显著影响了木荷幼苗的养分利用特征,因而木荷作为伴生树种优化林分环境对其早期生长具有重要意义。  相似文献   

9.
The aim of this work was to study the sensitivity of carbon dioxide (CO2) emissions from wood energy to different forest management regimes when aiming at an integrated production of timber and energy biomass. For this purpose, the production of timber and energy biomass in Norway spruce [Picea abies (L.) Karst] and Scots pine (Pinus sylvestris L.) stands was simulated using an ecosystem model (SIMA) on sites of varying fertility under different management regimes, including various thinning and fertilization treatments over a fixed simulation period of 80 years. The simulations included timber (sawlogs, pulp), energy biomass (small‐sized stem wood) and/or logging residues (top part of stem, branches and needles) from first thinning, and logging residues and stumps from final felling for energy production. In this context, a life cycle analysis/emission calculation tool was used to assess the CO2 emissions per unit of energy (kg CO2 MWh?1) which was produced based on the use of wood energy. The energy balance (GJ ha?1) of the supply chain was also calculated. The evaluation of CO2 emissions and energy balance of the supply chain considered the whole forest bioenergy production chain, representing all operations needed to grow and harvest biomass and transport it to a power plant for energy production. Fertilization and high precommercial stand density clearly increased stem wood production (i.e. sawlogs, pulp and small‐sized stem wood), but also the amount of logging residues, stump wood and roots for energy use. Similarly, the lowest CO2 emissions per unit of energy were obtained, regardless of tree species and site fertility, when applying extremely or very dense precommercial stand density, as well as fertilization three times during the rotation. For Norway spruce such management also provided a high energy balance (GJ ha?1). On the other hand, the highest energy balance for Scots pine was obtained concurrently with extremely dense precommercial stands without fertilization on the medium‐fertility site, while on the low‐fertility site fertilization three times during the rotation was needed to attain this balance. Thus, clear differences existed between species and sites. In general, the forest bioenergy supply chain seemed to be effective; i.e. the fossil fuel energy consumption varied between 2.2% and 2.8% of the energy produced based on the forest biomass. To conclude, the primary energy use and CO2 emissions related to the forest operations, including the production and application of fertilizer, were small in relation to the increased potential of energy biomass.  相似文献   

10.
Changes in growth parameters, carbon assimilation efficiency, and utilization of 14CO2 assimilate into alkaloids in plant parts were investigated at whole plant level by treatment of Catharanthus roseus with gibberellic acid (GA). Application of GA (1 000 g m−3) resulted in changes in leaf morphology, increase in stem elongation, leaf and internode length, plant height, and decrease in biomass content. Phenotypic changes were accompanied by decrease in contents of chlorophylls and in photosynthetic capacity. GA application resulted in higher % of total alkaloids accumulated in leaf, stem, and root. GA treatment produced negative phenotypic response in total biomass production but positive response in content of total alkaloids in leaf, stem, and roots. 14C assimilate partitioning revealed that 14C distribution in leaf, stem, and root of treated plants was higher than in untreated and variations were observed in contents of metabolites as sugars, amino acids, and organic acids. Capacity to utilize current fixed 14C derived assimilates for alkaloid production was high in leaves but low in roots of treated plants despite higher content of 14C metabolites such as sugars, amino acids, and organic acids. In spite of higher availability of metabolites, their utilization into alkaloid production is low in GA-treated roots.  相似文献   

11.
ABSTRACT

Peach (Prunus persica L.) seedlings were germinated and grown for two growing seasons either in open top chambers (OTC) with ambient (350 μmol mol-1) or elevated (700 μmol mol-1) [CO2], or in an outside control plot, all located inside a glasshouse. The seedlings were grown in 10 dm3 pots and were fertilised once a week following Ingestad principles in order to supply mineral nutrients at free access rates. In the second growing season, rapid onset of water stress was imposed on rapidly growing peach seedlings by withholding water for a four-week drying cycle. In elevated [CO2], seedlings had a total dry mass which was 33% higher than that in ambient [CO2]. This increase was largely a consequence of increased height growth. [CO2] and irrigation treatments had only small effects on allocation, and there was no increase in root allocation with low water availability possibly as consequence of the high-nutrient regime. Specific leaf area was significantly reduced in elevated [CO2], and probably resulted from increases in starch concentrations. Stomatal conductance (g s) was not affected by elevated [CO2] both in well-watered and water-stressed seedlings. The combination of increased assimilation rate (A) and unchanged g s led to large increases in intrinsic water use efficiency in response to elevated [CO2]. The A/C i curves were used to derive the parameters describing photosynthetic capacity, Amax, Jmax and Vcmax . These parameters were similar among [CO2] treatments; thus, there was no downward acclimation of photosynthesis in elevated [CO2]. Moreover, Amax, Jmax and Vcmax scaled linearly with leaf N content per unit leaf area. This indicates that the whole-plant source-sink balance of peach seedlings was not disrupted by growth in elevated [CO2], because root volume and nutrient supply were non-restricting. These values may be used in scaling up models to improve their ability to predict the magnitude of tree responses to climate change in the Mediterranean area.  相似文献   

12.
光强对杉木幼苗形态特征和叶片非结构性碳含量的影响   总被引:3,自引:0,他引:3  
选取南方重要的造林树种杉木(Cunninghamia lanceolata(Lamb.)Hook)幼苗为研究对象,通过搭建遮荫棚设置5个光照强度(分别为自然光照的100%、60%、40%、15%和5%),研究了幼苗在不同光照强度下的生长形态、生物量积累及分配、叶片的非结构性碳含量(NSC)特征。结果显示:(1)叶长、叶宽和叶面积在40%光照强度下最大,而比叶面积和叶片相对含水量随着光照强度的降低呈递增趋势;(2)随着光照强度的降低,杉木幼苗各器官生物量下降,根生物量比和根冠比降低,茎和叶生物量比增加;(3)杉木幼苗在60%光照强度下叶片非结构性碳含量最高,5%光照强度下含量最低;(4)杉木幼苗比叶面积与叶生物量以及与非结构性碳含量之间存在极显著的负相关关系(P0.01),叶生物量与非结构性碳含量之间存在极显著的正相关关系(P0.01)。杉木幼苗能够通过形态学上的可塑性来适应不同的光强环境,提高光竞争能力和生存适合度,但在5%光照强度下,由于较难维持碳收支平衡而不利于其生长和存活。  相似文献   

13.
We studied the responses of leaf water potential (Ψw), morphology, biomass accumulation and allocation, and canopy productivity index (CPI) to the combined effects of elevated CO2 and drought stress in Caragana intermedia seedlings. Seedlings were grown at two CO2 concentrations (350 and 700 μmol mol−1) interacted with three water regimes (60–70%, 45–55%, and 30–40% of field capacity of soil). Elevated CO2 significantly increased Ψw, decreased specific leaf area (SLA) and leaf area ratio (LAR) of drought-stressed seedlings, and increased tree height, basal diameter, shoot biomass, root biomass as well as total biomass under the all the three water regimes. Growth responses to elevated CO2 were greater in well-watered seedlings than in drought-stressed seedlings. CPI was significantly increased by elevated CO2, and the increase in CPI became stronger as the level of drought stress increased. There were significant interactions between elevated CO2 and drought stress on leaf water potential, basal diameter, leaf area, and biomass accumulation. Our results suggest that elevated CO2 may enhance drought avoidance and improved water relations, thus weakening the effect of drought stress on growth of C. intermedia seedings.  相似文献   

14.
The system consisting of a few proportional detectors with appropriate electronic components was earlier developed for in vivo studies of long distance transport in whole maize seedlings. 14CO2 assimilation rate (Pa), time of radioactivity appearing in the loading region (AT), transport speed in the leaf (TSl), transport speed between the leaf and the roots (TSr), the maximum radioactivity values detected in the leaf below the feeding area (Rl) and in the mesocotyl (Rr) from leaves to roots in maize seedlings were calculated from the obtained temporal profiles of radioactivity. The study was undertaken to follow the changes in separate steps of long distance transport in maize seedlings as affected by two light irradiances and application of p-chloromercuribenzenesulphonic acid and fusicoccin, with the aim to investigate different steps of long distance transport, particularly phloem loading. The method used allows to study in vivo the different aspects of long distance transport in maize seedlings, both qualitatively and quantitatively. It was shown that the characteristics obtained from the radioactivity profiles corresponded to different steps of long distance transport, as assimilate synthesis, phloem loading, and phloem translocation. It was also demonstrated that although active phloem loading participate in assimilate export from the leaves, assimilate transport along the maize seedling might undergo accordingly to assimilate gradient, particularly under light irradiance higher than during the growth.  相似文献   

15.
Aim Tropical forests have been recognized as important global carbon sinks and sources. However, many uncertainties about the spatial distribution of live tree above‐ground biomass (AGB) remain, mostly due to limited availability of AGB field data. Recent studies in the Amazon have already shown the importance of large sample size for accurate AGB gradient analysis. Here we use a large stem density, basal area, community wood density and AGB dataset to study and explain their spatial patterns in an Asian tropical forest. Location Borneo, Southeast Asia. Methods We combined stem density, basal area, community wood density and AGB data from 83 locations in Borneo with an environmental database containing elevation, climate and soil variables. The Akaike information criterion was used to select models and environmental variables that best explained the observed values of stem density, basal area, community wood density and AGB. These models were used to extrapolate these parameters across Borneo. Results We found that wood density, stem density, basal area and AGB respond significantly, but differentially, to the environment. AGB was only correlated with basal area, but not with stem density and community wood specific gravity. Main conclusions Unlike results from Amazonian forests, soil fertility was an important positive correlate for AGB in Borneo while community wood density, which is a main driver of AGB in the Neotropics, did not correlate with AGB in Borneo. Also, Borneo's average AGB of 457.1 Mg ha?1 was c. 60% higher than the Amazonian average of 288.6 Mg ha?1. We find evidence that this difference might be partly explained by the high density of large wind‐dispersed Dipterocarpaceae in Borneo, which need to be tall and emergent to disperse their seeds. Our results emphasize the importance of Bornean forests as carbon sinks and sources due to their high carbon storage capacity.  相似文献   

16.
Forest biomass plays a key role in the global carbon cycle. In the present study, a general allometric model was derived to predict the relationships among the stem biomass Ms, aboveground biomass MA and total biomass MT, based on previously developed scaling relationships for leaf, stem and root standing biomass. The model predicted complex scaling exponents for MT and/or MA with respect to Ms. Because annual biomass accumulation in the stem, root and branch far exceeded the annual increase in standing leaf biomass, we can predict that MT ∝MA ∝ Ms as a simple result of the model. Although slight variations existed in different phyletic affiliations (i.e. conifers versus angiosperms), empirical results using Model Type Ⅱ (reduced major axis) regression supported the model's predictions. The predictive formulas among stem, aboveground and total biomass were obtained using Model Type I (ordinary least squares) regression to estimate forest biomass. Given the low mean percentage prediction errors for aboveground (and total biomass) based on the stem biomass, the results provided a reasonable method to estimate the biomass of forests at the individual level, which was insensitive to the variation in local environmental conditions (e.g. precipitation, temperature, etc.).  相似文献   

17.
Cotton (Gossypium hirsutum L. cv. CS50) plants were grown at two levels of relative humidity (RH) and sprayed daily with abscisic acid (ABA) at four concentrations. Plants grown at lower humidity had higher transpiration rates, lower leaf temperatures and lower stomatal conductance. Plant biomass was also reduced at low humidity. Within each humidity environment, increasing ABA concentration generally reduced stomatal conductance, evaporation rates, superficial leaf density and plant biomass, and increased leaf temperature and specific leaf area. As expected, decreased stomatal conductance resulted in decreased carbon isotope discrimination in leaf material ( Δ 13Cl). Plants grown at low humidity were more enriched in 18O than those grown at high RH, as theory predicts. Within each humidity environment, increasing ABA concentration increased oxygen isotope enrichment of leaf cellulose ( Δ 18Oc) and whole‐leaf tissue ( Δ 18Ol). Values of Δ 13Cl and Δ 18Ol predicted by theoretical models were close to those observed, accounting for 79% of the measured variation in Δ 13Cl and 95% of the measured variation in Δ 18Ol. Supporting theory, Δ 13Cl and Δ 18Ol in whole‐leaf tissue were negatively related.  相似文献   

18.
The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem‐scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable scaffolding tower to measure woody tissue CO2 efflux from ground level to the canopy top across a range of sites of varying slope and soil phosphorus content in a primary tropical rain forest in Costa Rica. The objectives of this study were to: (1) determine whether to use surface area, volume, or biomass for modeling and extrapolating wood CO2 efflux, (2) determine if wood CO2 efflux varied seasonally, (3) identify if wood CO2 efflux varied by functional group, height in canopy, soil fertility, or slope, and (4) extrapolate wood CO2 efflux to the forest. CO2 efflux from small diameter woody tissue (<10 cm) was related to surface area, while CO2 efflux from stems >10 cm was related to both surface area and volume. Wood CO2 efflux showed no evidence of seasonality over 2 years. CO2 efflux per unit wood surface area at 25° (FA) was highest for the N‐fixing dominant tree species Pentaclethra macroloba, followed by other tree species, lianas, then palms. Small diameter FA increased steeply with increasing height, and large diameter FA increased with diameter. Soil phosphorus and slope had slight, but complex effects on FA. Wood CO2 efflux per unit ground area was 1.34±0.36 μmol m?2 s?1, or 508±135 g C m?2 yr?1. Small diameter wood, only 15% of total woody biomass, accounted for 70% of total woody tissue CO2 efflux from the forest; while lianas, only 3% of total woody biomass, contributed one‐fourth of the total wood CO2 efflux.  相似文献   

19.
A pot experiment was conducted to study the effects of root pruning at the stem elongation stage on the growth and water use efficiency (WUE) of winter wheat (Triticum aestivum). The results showed that stomatal conductance (g) and transpiration (E) of wheat were very sensitive to root pruning. After root pruning, they declined rapidly and but returned to pre-pruning values 15 days after treatment. Under well-watered conditions, there was no significant difference in leaf water potential (ψleaf) between root pruned and control plants after root pruning. Under moderate drought stress, ψleaf of root pruned plants declined significantly compared to the control 3 days after root pruning. After 15 days, ψleaf of root pruned plants was similar to the controls. Under different soil moisture levels, net assimilation rate (A) of root pruned plants was lower than controls 3–7 days after root pruning, but was similar to the controls 15 days after pruning. At anthesis (50 days after root pruning), root pruned plants showed significantly higher A compared with the control. Leaf area per tiller and tiller number of root pruning plants was significant lower than the control at booting stage, which showed that root pruning restrained the growth of plants in the early growing stage, but leaf area per stem, of root pruned plants, was similar to the control at anthesis. Under both soil moisture levels, there was no significant difference in grain yield between root pruned and the control plants in the monoculture. In mixture with the control plants, the root pruned plants was less productive and had a lower relative yield (0.92 and 0.78, respectively) compared with the control (1.13 and 1.19, respectively), which suggested that the pruned plants lost some of its competing ability and showed a lower ability to acquire and use the same resources in the mixture compared with the control plant. Over the whole growing cycle, root pruning reduced water consumption (by 10% under well-watered conditions and 16% under moderate drought stress) of wheat significantly compared to the control (< 0.05), and but there was no significant difference in grain yield between root pruned and control plants. Therefore root pruned wheat had a higher WUE with respect to grain yield compared with the controls. In conclusion, lowering water consumption by root pruning in the early growing stage is an effective way to improve water use efficiency in arid and semi arid areas.  相似文献   

20.
We monitored a permanent plot of 3-year-old Chamaecyparis obtusa seedlings for 11 years after planting. As the stem cross-sectional area at the crown base can be regarded as a good predictor of leaf mass according to the pipe model theory, we measured this parameter to determine temporal trends in leaf biomass. The mean values showed asymptotic growth, maintaining a near-constant level after a stand age of 9 years. Peak values were found at 9 years, followed by a slight decrease because of a continuous reduction in stand density. This temporal trend suggests that the leaf biomass per unit land area attains a peak at an age of 9 years. As the stand density changes with stand age, the relationship between stand stem cross-sectional area at the crown base and stand density showed an optimum curve in which the optimum density was around 9200 ha−1. We propose hypothetical trends in primary productivity and biomass density with stand age, based on the results of measurements of stem cross-sectional area at the crown base and stand density under the assumption of the 3/2 power law of self-thinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号