首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Memantine, a clinically used NMDA receptor antagonist possesses neuroprotective properties, but the exact mechanisms of its beneficial action on neuronal survival are poorly recognized. In the present study, some intracellular mechanisms of memantine effects on staurosporine-evoked cell death were investigated in primary cortical neurons. Memantine (0.1–2 μM) suppressed neuronal apoptosis evoked by staurosporine in 7 DIV cortical neurons, whereas other antagonists of NMDA receptor, MK-801 (1 μM) and AP-5 (100 μM) were ineffective. The anti-apoptotic effects of memantine were not connected with any changes in cytoplasmic calcium concentration or reactive oxygen species level. The immunoblot analysis showed that the staurosporine induced a decrease in p-Akt protein kinase level and that this effect was reversed by memantine treatment. Moreover, the PI3-K inhibitors, wortmannin and LY 294002 attenuated the anti-apoptotic action of memantine on staurosporine-induced cell damage. Furthermore, the ELISA studies showed increased cellular and released BDNF protein level after combined treatment with memantine and staurosporine. There was no effect of memantine on the activation and expression of other protein kinases involved in the mechanism of cellular survival, i.e. ERK1/2, JNK and GSK3-β. The obtained data suggest an NMDAR-independent action of memantine in attenuation of neuronal apoptosis and point to the engagement of BDNF and PI3-K/Akt pathway in these processes.  相似文献   

2.
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitro by induction of oxygen and glucose deprivation (OGD), there is scant data regarding expression and functionality of NMDARs in such slice cultures. Here, we have evaluated the contribution of NMDARs in mediating excitotoxic cell death after exposure to NMDA or OGD in organotypical hippocampal slice cultures after 14 days in vitro (DIV14). We found that all NMDAR subunits were expressed at DIV14. The NMDARs were functional and contributed to cell death, as evidenced by use of the NMDAR antagonist MK-801 (dizocilpine). Excitotoxic cell death induced by NMDA could be fully antagonized by 10 μM MK-801, a dose that offered only partial protection against OGD-induced cell death. Very high concentrations of MK-801 (50–100 μM) were required to counteract cell death at long delays (48–72 h) after OGD. The relative high dose of MK-801 needed for long-term protection after OGD could not be attributed to down-regulation of NMDARs at the gene expression level. Our data indicate that NMDAR signaling is just one of several mechanisms underlying ischemic cell death and that prospective cytoprotective therapies must be directed to multiple targets.  相似文献   

3.
Abstract : Riluzole is used clinically in patients with amyotrophic lateral sclerosis. As oxidative stress, in addition to excitotoxicity, may be a major mechanism of motoneuron degeneration in patients with amyotrophic lateral sclerosis, we examined whether riluzole protects against nonexcitotoxic oxidative injury. Probably reflecting its weak antiexcitotoxic effects, riluzole (1-30 μ M ) attenuated submaximal neuronal death induced by 24-h exposure to 30 μ M kainate or NMDA, but not that by 100 μ M NMDA, in cortical cultures. Riluzole also attenuated nonexcitotoxic oxidative injury induced by exposure to FeCl3 in the presence of MK-801 and CNQX. Consistent with its antioxidative effects, riluzole reduced Fe3+-induced lipid peroxidation, and inhibited cytosolic phospholipase A2. By contrast, riluzole did not attenuate neuronal apoptosis induced by staurosporine. Rather unexpectedly, 24-48-h exposure to 100-300 μ M riluzole induced neuronal death accompanied by nuclear and DNA fragmentations, which was attenuated by caspase inhibitor carbobenzyloxy-Val-Ala-Asp-fluoromethyl ketone but not by protein synthesis inhibitor cycloheximide. The present study demonstrates that riluzole has direct antioxidative actions, perhaps in part by inhibiting phospholipase A2. However, in the same neurons, riluzole paradoxically induces neuronal apoptosis in a caspase-sensitive manner. Considering current clinical use of riluzole, further studies are warranted to investigate its potential cytolethal effects.  相似文献   

4.
Ethanol significantly enhances cell death of differentiated rat cerebellar granule neurons on culture in a serum-free medium containing a depolarizing concentration of KCl (25 mM), 5 M MK-801 (an NMDA receptor antagonist), and 20–200 mM ethanol for 1–4 days. Cell death augmented by ethanol was concentration- and time-dependent with neurons displaying hallmark apoptotic morphology and DNA fragmentation that correlated with the activation of cytosolic caspase-3. Inclusion of 5 M MK-801 or 100 M glycine in culture media did not alter rates of cell death indicating ethanol toxicity is mediated via an NMDA receptor-independent pathway. Preincubation with 50 M gangliosides GM1, GD1a, GD1b or GT1b for 2 h, or preincubation with 10 M LIGA20 (a semisynthetic GM1 with N-dichloroacetylsphingosine) for 10 min, attenuated caspase-3 activity and ethanol-induced cell death. Data show native gangliosides and a synthetic derivative are potently neuroprotective in this model of ethanol toxicity, and potentially serve as useful probes to further unravel the mechanisms relevant to neuronal apoptosis.  相似文献   

5.
Abstract: Quantitative autoradiography of [3H]MK-801 binding was used to characterize regional differences in N -methyl- d -aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [3H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [3H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 μ M . In the presence of added glutamate (3 μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [3H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [3H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 μ M . In the presence of added glycine (1 μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [3H]MK-801 binding.  相似文献   

6.
Cerebellar granule cells (CGC) die apoptotically after five days in culture (DIV) at physiological concentrations of potassium (5 mM; K5). When CGC are depolarized (K25) or treated with NMDA (150 M) cell survival is increased. CGC changed from K25 to K5 die after 24–48 h. It is known that heat shock protein (HSP) may protect from cell death. Here, we found that cells in K5 showed an increase in HSP-70 levels after 3 DIV. Similarly, in cells changed from K25 to K5, HSP-70 levels were increased after 6 h. Neither NMDA nor K25 treatment affected HSP-70 levels from 2–7 DIV. Ethanol or thermal stress induced HSP-70, but cell survival was not affected in K5 medium. These results suggest that HSP, particularly HSP-70, are not involved in the mechanisms by which NMDA and KCl promote cell survival.  相似文献   

7.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

8.
Cerebellar granule cells (CGC) cultured under 5mM KCl (K5) undergo apoptosis after 5 days in vitro (DIV). CGC death is reduced by chronic treatment with 25 mM KCl (K25) or NMDA. Also, when CGC cultured for 6-8 DIV in K25 are transferred to a K5 medium, cells die apoptotically. Moreover, Bcl-2 and Bcl-xL protect neurons from apoptosis, while Bax and Bcl-xS may act as proapototic proteins. It is suggested that these members of the Bcl-2 family may be involved in the cytochrome-c (cyt-c) release to the cytosol. Cytochrome-c is able to form a complex with other proteins to activate a cascade of proteases. In this work, we found that Bcl-2 levels in K5 cells did not show any change during 2-7 days in vitro (DIV); but cells grown with NMDA and K25 displayed an increase (55% approximately) of Bcl-2 from 4 DIV, as compared to control. Under these conditions, Bax levels showed a tendency to decrease with age under control cells and NMDA/K25 induced a reduction of approximately 10% in Bax levels from 4 DIV. On the other hand, in cells maintained in K25 during 7 DIV and then switched to a K5 medium, the levels of Bax showed a consistent decrease (30% after 8h). Under these conditions, the Bcl-2 levels did not show any significant change after 24h. Cytochrome-c levels were unaffected under K5, NMDA and K25 and only a marginal increase of cytochrome-c in the cytosol was detected at 6h after switching. We also found that caspase-9 was only activated under K25-deprivation meanwhile caspase-3 was involved in both protocols. These results suggest that the Bcl-2 family members, caspases activation and cytochrome-c release are involved in CGC death induced by K5 and their participation in this process could be different depending on neuronal maturation in culture.  相似文献   

9.
Oh  Seikwan  Hoshi  Katsuji  Ho  I. K. 《Neurochemical research》1997,22(7):767-774
Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300g/10l/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10l/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.  相似文献   

10.
1. Spinal cord ischemia evoked a biphasic increase in CSF-Glu during 20 min of ischemia (40%) and at 2 hr after reperfusion (70%) in the nontreated group that was attenuated by all treated groups. But MK-801(15 g i.t.) did not affect the increased Glu at 2 hr (80%).2. The argyrophilia observed in laminae II–V at 8 hr after reperfusion was attenuated by hypothermia (33°C) and combination with MK-801, but the attenuation was less with MK-801.3. Mild hypothermia attenuated the biphasic increase in CSF-Glu and corresponding development of neuronal damage after spinal cord ischemia.4. Mild hypothermia with NMDA antagonism did not yield any further effects, suggesting that hypothermia itself plays a pivotal role in the protection.  相似文献   

11.
Abstract: Staurosporine (0.03–0.5 µ M ) induced a dose-dependent, apoptotic degeneration in cultured rat hippocampal neurons that was sensitive to 24-h pretreatments with the protein synthesis inhibitor cycloheximide (1 µ M ) or the cell cycle inhibitor mimosine (100 µ M ). To investigate the role of Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis, we overexpressed calbindin D28K, a Ca2+ binding protein, and Cu/Zn superoxide dismutase, an antioxidative enzyme, in the hippocampal neurons using adenovirus-mediated gene transfer. Infection of the cultures with the recombinant adenoviruses (100 multiplicity of infection) resulted in a stable expression of the respective proteins assessed 48 h later. Overexpression of both calbindin D28K and Cu/Zn superoxide dismutase significantly reduced staurosporine neurotoxicity compared with control cultures infected with a β-galactosidase overexpressing adenovirus. Staurosporine-induced neuronal apoptosis was also significantly reduced when the culture medium was supplemented with 10 or 30 m M K+, suggesting that Ca2+ influx via voltage-sensitive Ca2+ channels reduces this apoptotic cell death. In contrast, neither the glutamate receptor agonist NMDA (1–10 µ M ) nor the NMDA receptor antagonist dizocilpine (MK-801; 1 µ M ) was able to reduce staurosporine neurotoxicity. Cultures treated with the antioxidants U-74500A (1–10 µ M ) and N -acetylcysteine (100 µ M ) also demonstrated reduced staurosporine neurotoxicity. These results suggest a fundamental role for both Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis.  相似文献   

12.
The features of neuronal damage induced by the mitochondrial toxin NaN3 were investigated in rat primary cortical neuron cultures. Cell viability (MTT colorimetric determination) and transmembrane mitochondrial potential (J-C1 fluorescence) were concentration-dependently reduced 24 h after NaN3; neither nuclear fragmentation by DAPI, nor Annexin V positivity by flow cytometry were detected, ruling out the occurrence of apoptosis. The loss in cell viability (to 54 ± 2%) observed 24 h after a 10-min treatment with 3 mM NaN3 was prevented by the NMDA glutamate receptor antagonist MK801 (1 μM), by the antioxidants trolox (100 μM) and acetyl-l-carnitine (1 mM) and by the nitric oxide synthase inhibitor, L-NAME (100 μM), but not by the guanylylcyclase inhibitor ODQ, 10 μM. The mitochondrial dysfunction induced by NaN3 provides a common platform for investigating the mechanisms of both ischemic and degenerative neuronal injury, useful for screening potential protective agents against neuronal death. Rita Selvatici and Maurizio Previati equally contributed to the work.  相似文献   

13.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

14.
In vivo studies have shown potent protection by volatile anesthetic agents against cerebral ischemic insults. Volatile agents have also been shown to antagonize glutamatergic neurotransmission at the N-methyl-D-aspartate (NMDA) receptor. This study examined the potential for halothane to reduce neuronal excitotoxic lesions caused by NMDA. Fetal rat cortical cell cultures were allowed to mature 13–16 d. Culture wells (n = 13–16) were treated with 0 mM – 3.96 mM halothane in the presence/absence of 30 M NMDA. Additional cultures were exposed to 30 M NMDA in the presence/absence of 10 M MK-801 or 10 ACEA 1021. Cellular lethality was assessed by measurement of lactate dehydrogenase (LDH) 24 hrs later. A maximal effect of halothane was observed at 0.70 mM (2.1 vol%) wherein a 36% reduction in NMDA-stimulated LDH release occurred relative to untreated controls. Both MK-801 and ACEA 1021 caused complete inhibition of NMDA-stimulated LDH release. These data confirm that halothane has modulatory effects at the NMDA receptor but potency of this drug is less than that of specific antagonists of either glutamate or glycine. These findings suggest that halothane protection in vivo can be partially explained by anti-excitotoxic properties although other mechanisms of action are probably also important.  相似文献   

15.
Effects of acetylcholine and of the cholinergic precursors choline, cytidine 5′-diphosphocholine (CDP-choline) and α-glyceril-phosphorylcholine (α-GPC) on transglutaminase (TG) and cyclin D1 expression were studied in primary astrocyte cultures by confocal laser microscopy (CLSM) with monodansyl-cadaverine uptake as a marker of enzyme activity and by immunochemistry (Western blotting). CLSM analysis showed an increased cytofluorescence in 0.1 μM choline-treated astrocytes. Treatment with CDP-choline dose-dependently increased TG. A total of 1 μM CDP-choline exposure in 14 days in vitro (DIV) astrocyte cultures increased cytofluorescence. A total of 1 μM α-GPC 24 h-treated cultures revealed increased cytofluorescence both in cytosol and nuclei. Western blot analysis showed an increased TG expression in cultures exposed for 24 h to 1 μM choline or α-GPC, whereas in 24 h 1 μM CDP-choline and acetylcholine-treated astrocytes TG expression was unaffected. Treatment with 1 μM acetylcholine reduced TG expression at 21 DIV. In cultures at 14 and 35 DIV cholinergic precursor treatment for 24 h induced a marked down-regulation of cyclin D1 expression, with reduced cyclin D1 expression in 1 μM α-GPC treated astrocytes. Our data suggest a role of cholinergic precursors investigated independent from acetylcholine on maturation and differentiation of astroglial cells in vitro, rather than on their growth, proliferation and development in culture. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

16.
The biochemical and pharmacological properties of [3H]MK-801 binding to the N-methyl-d-aspartate (NMDA) receptor-channel in homogenates of mouse, guinea pig and dog brain, dog cerebral cortex and rat spinal cord were determined using radioligand binding techniques. Specific [3H]MK-801 binding increased linearily with increasing tissue concentration and in general represented 80–93% of the total binding at 6–8 nM radioligand concentration. [3H]MK-801 interacted with brain and spinal homogenates with high affinity. The dissociation constants (K d ) for all tissues studied were similar ranging between 7.9 and 11.9 nM, whereas the maximum number of binding sites (Bmax) showed a wide, tissue-dependent range (0.1–6.75 pmol/mg protein). The rank order of tissue enrichment was found to be as follows: mouse brain>>dog cerebral cortex>>dog brain>> guinea pig brain>>rat spinal cord. Specific [3H]MK-801 binding in rodent and dog brain, dog cerebral cortex and rat spinal cord exhibited a similar pharmacological profile 9correlation coefficients=0.93–0.99). The rank order of potency of unlabelled compounds competing for [3H]MK-801 binding was: (+)MK-801>(–)MK-801>phencyclidine>(–)cyclazocine>>(+)cyclazocine ketamine>(+)N-allyl-N-normetazocine>(–)N-allyl-N-normetazocine>(–)pentazocine>(+)pentazocine. NMDA, Kainate, quisqualate and several other compounds failed to inhibit [3H]MK-801 binding at 100 M. In modulation studies conducted on extensively washed dog cortex membranes, Mg2+ ions stimulated [3H]MK-801 binding at 10 M-1 mM (EC50=91.5 M) and then inhibited the binding from 1 mM to 10 mM (IC50=3.1 mM). Glycine stimulated [3H]MK-801 binding at 30 nM-1 mM (EC50=256 nM). In contrast, Zn2+ ions inhibited the binding of [3H]MK-801 binding site exhibited similar pharmacological and biochemical properties. These data appear to suggest that the pharmacological profile of the NMDA-receptor-channel is species and tissue independent.  相似文献   

17.
The objective of this study was to evaluate the cardiac toxicity induced by carboplatin, a second generation platinum-containing anti-cancer drug, and to test whether pravastatin can reduce this cardio-toxicity. In the present study, infusion of carboplatin (100 mg/kg) to mice resulted in decreased survival rates and abnormal cardiac histology, concomitant with increased cardiac apoptosis. In addition, treatment of cultured rat cardiomyocytes with carboplatin (100 μM for 48 h) caused marked apoptosis and increased caspase-3, -9, and cytochrome C, but decreased BCL-XL protein expression, and this was inhibited by reactive oxygen species (ROS) scavenger n-acetylcysteine. Furthermore, pretreatment of cardiomyocytes with pravastatin (20 μM) before carboplatin exposure significantly attenuated apoptosis and decreased caspase-3, -9, cytochrome C activity. Lastly, mice pre-treated with pravastatin before carboplatin treatment showed improved survival rate and cardiac function, with reduced cardiomyocyte apoptosis via activating Akt and restoring normal mitochondrial HAX-1 in heart tissue. In summary, our results show that carboplatin can induce cardiotoxicity in vivo and in cultured cells via a mitochondrial pathway related to ROS production, whereas pravastatin administration can reduce such oxidative stress thus prevented cardiac apoptosis. Therefore, pravastatin can be used as a cytoprotective agent prior to carboplatin chemotherapy. Ching-Feng Cheng and Shu-Hui Juan contributed equally to the work.  相似文献   

18.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

19.
The influence of glutamate and agonists of its ionotropic receptors on free radical formation in rat brain synaptosomes was investigated using the fluorescent dye DCFDA. Glutamate at concentrations of 100 μM and 1 mM increased the production of reactive oxygen species. This phenomenon was eliminated by removing calcium from the incubation medium. Addition of NMDA (100 μM) or kainate (100 μM) to a suspension of synaptosomes also led to free radical formation. The influence of glutamate receptor agonists was blocked by the specific antagonists MK-801 and NBQX. Thus, activation of NMDA and AMPA/kainate receptors can lead to oxidative stress in neuronal presynaptic endings.  相似文献   

20.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号