首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of the urokinase-type plasminogen activator (uPA) to its receptor activates diverse cell signaling pathways. How these signals are integrated so that cell physiology is altered remains unclear. In this study, we demonstrated that migration of MCF-7 breast cancer cells and HT-1080 fibrosarcoma cells on serum-coated surfaces is stimulated by agents that activate ERK, including uPA, epidermal growth factor, and constitutively active MEK1. The promigratory activity of these agents was entirely blocked not only by the MEK-specific antagonist PD098059, but also by antagonists of the Rho-Rho kinase pathway, including Y-27632 and dominant-negative RhoA (RhoA-N19). uPA did not significantly increase the level of GTP-bound RhoA, suggesting that the constitutive activity of the Rho-Rho kinase pathway may be sufficient to support ERK-stimulated cell migration. Paradoxically, Y-27632 and RhoA-N19 increased ERK phosphorylation in MCF-7 cells, providing further evidence that ERK activation alone does not promote cell migration when Rho kinase is antagonized. When MCF-7 cell migration was stimulated by ERK-independent processes such as expression of the beta(3) integrin subunit or changing the substratum to type I collagen, Y-27632 and RhoA-N19 failed to inhibit the response. This study supports a model in which the Ras-ERK and Rho-Rho kinase pathways cooperate to promote cell migration. Neutralizing either pathway is sufficient to block the response to agents that stimulate cell migration by activating ERK.  相似文献   

2.
The role of erythropoietin receptor (EpoR) expression in tumor cells and the potential of EpoR-mediated signaling to contribute to cellular proliferation and invasiveness require further characterization. To determine whether EpoR expression and activation in tumor cells modulates intracellular signal transduction to promote cellular proliferation and migration, we employed a novel experimental model using human breast cancer cells engineered to stably express a constitutively active EpoR-R129C variant. EpoR-R129C expression resulted in increased cellular proliferation and migration of breast cancer cells and these effects were associated with significantly increased Epo-induced phosphorylation of ERK1/2, AKT and c-Jun-NH2-kinase (SAPK/JNK) proteins. Expression of the constitutively active EpoR-R129C receptor promoted the proliferation and migration of breast cancer cells via activation of ERK- and SAPK/JNK-dependent signaling pathways, respectively. These findings suggest that EpoR over-expression and activation in breast cancer cells has the potential to contribute to tumor progression by promoting the proliferation and invasiveness of the neoplastic cells.  相似文献   

3.
Elevated levels of epidermal growth factor receptor (EGFR) are predictive of increased invasion and metastasis in many human cancers. In the present study, we have shown that two distinct pathways regulate cell migration in EGFR-overexpressing invasive cells such as MDA 468 breast cancer cells: mitogen-activated protein kinase (MAPK or ERK 1 and 2) pathways play a major role in early stages to cell migration; and protein kinase C delta isoforms (PKC-delta) play a significant role in later stages of sustained cell migration. Inhibition of MAPK activity with MAP kinase kinase (MEK) inhibitor PD98059 blocks early stages of cell migration (up to 4 h); however, cells revert back to enhanced cell migration after 4 h. While inhibition of PKC-delta activity with rottlerin or dominant-negative PKC-delta expression blocks sustained cell migration after 4 h and up to 12 h, the combination of MAPK and PKC inhibitors completely blocked transforming growth factor alpha (TGF-alpha)-induced cell migration in EGFR-overexpressing breast cancer cells. However, inhibition of MAPK activity completely blocked cell migration in low EGFR-expressing non-invasive breast cancer cells such as MCF-7 cells. Forced overexpression of EGFR in MCF-7 cells (EGFR/MCF-7 cells) resulted in cell migration patterns seen in MDA 468 cells, that is, MAPK pathways play a major role in early stages to cell migration, and PKC-delta plays a major role in later stages of sustained cell migration. The above data demonstrate that EGFR-overexpressing invasive cells have the ability to compensate the loss of MAPK-mediated signaling through activation of PKC-delta signaling for cell migration, which plays a major role in invasion and metastasis. In addition, data suggest that inhibition of MAPK and PKC-delta signaling pathways should abrogate cell migration and invasion in EGFR-overexpressing human breast cancer cells.  相似文献   

4.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

5.
Previous reports have shown a direct effect of erythropoietin (Epo) on vascular smooth muscle cells (VSMCs). Our aim was to assess expression of the Epo receptor (EpoR) on VSMCs and to study the activation of two major signaling cascades activated by Epo, namely JAK2/STAT5 and MAPK pathways. All experiments were performed in parallel using the Epo-responsive UT7 cell line. From semiquantitative RT-PCR experiments, VSMCs were estimated to express approximately 30-fold less EpoR mRNA than UT7 cells. Epo-induced phosphorylation of proteins involved in the EpoR/JAK2/STAT5 cascade could not be detected in VSMCs, even using pharmacological doses of Epo (250 IU/ml). In contrast, a strong activation of MAP kinase pathway was detected with as low as 10 IU/ml Epo. We suggest that MAPK activation reflects a physiologically relevant effect of Epo on VSMCs that may be correlated to cell proliferation.  相似文献   

6.
Mitogen-activated protein (MAP) kinase mediates cell proliferation, cell differentiation, and cell survival by regulating signaling pathways activated by receptor protein tyrosine kinases (RPTKs), including the insulin-like growth factor 1 receptor (IGF-IR). We analyzed the upstream signaling components of the MAP kinase pathway, including RPTKs, in human breast cancer cell lines and found that some of those components were overexpressed. Importantly, signaling molecules such as IGF-IR, insulin receptor, and insulin receptor substrate 1, leading to the MAP kinase pathway, were found to be concomitantly overexpressed within certain tumor lines, i.e., MCF-7 and T-47D. When compared with the nonmalignant and other breast tumor lines examined, MCF-7 and T-47D cells displayed a more rapid, robust, and sustained MAP kinase activation in response to insulin-like growth factor I (IGF-I) stimulation. By contrast, IGF-I treatment led to a sustained down-regulation of MAP kinase in those lines overexpressing ErbB2-related RPTKs. Interestingly, blocking the MAP kinase pathway with PD098059 had the greatest antiproliferative effect on MCF-7 and T-47D among the normal and tumor lines tested. Furthermore, addition of an IGF-IR blocking antibody to growth medium attenuated the ability of PD098059 to suppress the growth of MCF-7 and T-47D cells. Thus, our study suggests that concomitant overexpression of multiple signaling components of the IGF-IR pathway leads to the amplification of IGF-I-mediated MAP kinase signaling and resultant sensitization to PD098059. The enhanced sensitivity to PD098059 implies an increased requirement for the MAP kinase pathway in those breast cancer cells, making this pathway a potential target in the treatment of selected breast malignancies.  相似文献   

7.
在建立乳腺癌细胞MCF-7高转移倾向亚克隆LM-MCF-7细胞株的基础上,为阐明LM-MCF-7细胞具有更强增殖和迁移能力的分子机制,对其相关分子及其信号转导途径进行了探讨.免疫印迹结果显示,与MCF-7细胞相比,LM-MCF-7细胞中p-ERK1/2水平显著升高.流式细胞术和“伤口愈合”实验结果表明,ERK1/2的特异性抑制剂PD98059可明显抑制LM-MCF-7细胞的高增殖和高迁移能力.免疫印迹检测发现,与MCF-7细胞相比,LM-MCF-7细胞中与增殖和迁移相关的因子,如β-catenin、细胞周期蛋白D1、磷酸化肌球蛋白轻链(p-MLC)和肌球蛋白轻链激酶(MLCK)的水平呈明显增高,PD98059对这些因子水平的增高具有抑制作用.免疫荧光染色显示,LM-MCF-7细胞中β-catenin分布在细胞核中,应用PD98059处理后,β-catenin主要分布在胞浆中.上述研究结果表明,在LM-MCF-7细胞中活化的ERK1/2水平升高,是导致该细胞增殖和迁移能力增强的重要原因之一,与ERK1/2-MLCK-p-MLC和ERK1/2-β-catenin 细胞周期蛋白D1等信号转导途径有密切的关系.  相似文献   

8.
Urokinase-type plasminogen activator (uPA) activates the mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and 2, in diverse cell types. In this study, we demonstrate that uPA stimulates migration of MCF-7 breast cancer cells, HT 1080 fibrosarcoma cells, and uPAR-overexpressing MCF-7 cells by a mechanism that depends on uPA receptor (uPAR)-ligation and ERK activation. Ras and MAP kinase kinase (MEK) were necessary and sufficient for uPA-induced ERK activation and stimulation of cellular migration, as demonstrated in experiments with dominant-negative and constitutively active mutants of these signaling proteins. Myosin light chain kinase (MLCK) was also required for uPA-stimulated cellular migration, as determined in experiments with three separate MLCK inhibitors. When MCF-7 cells were treated with uPA, MLCK was phosphorylated by a MEK-dependent pathway and apparently activated, since serine-phosphorylation of myosin II regulatory light chain (RLC) was also increased. Despite the transient nature of ERK phosphorylation, MLCK remained phosphorylated for at least 6 h. The uPA-induced increase in MCF-7 cell migration was observed selectively on vitronectin-coated surfaces and was mediated by a beta1-integrin (probably alphaVbeta1) and alphaVbeta5. When MCF-7 cells were transfected to express alphaVbeta3 and treated with uPA, ERK was still phosphorylated; however, the cells did not demonstrate increased migration. Neutralizing the function of alphaVbeta3, with blocking antibody, restored the ability of uPA to promote cellular migration. Thus, we have demonstrated that uPA promotes cellular migration, in an integrin-selective manner, by initiating a uPAR-dependent signaling cascade in which Ras, MEK, ERK, and MLCK serve as essential downstream effectors.  相似文献   

9.
Co-expression of erythropoietin (Epo) and erythropoietin receptor (EpoR) has been found in various non-hematopoietic cancers including hereditary and sporadic renal cell carcinomas (RCC), but the Epo/EpoR autocrine and paracrine mechanisms in tumor progression have not yet been identified. In this study, we used RNA interference method to down-regulate EpoR to investigate the function of Epo/EpoR pathway in human RCC cells. Epo and EpoR co-expressed in primary renal cancer cells and 6 human RCC cell lines. EpoR signaling was constitutionally phosphorylated in primary renal cancer cells, 786-0 and Caki-1 cells, and recombinant human Epo (rhEpo) stimulation had no significant effects on further phosphorylation of EpoR pathway, proliferation, and invasiveness of the cells. Down-regulation of EpoR expression in 786-0 cells by lentivirus-introduced siRNA resulted in inhibition of growth and invasiveness in vitro and in vivo, and promotion of cell apoptosis. In addition, rhEpo stimulation slightly antagonized the anti-tumor effect of Sunitinib on 786-0 cells. Sunitinib could induce more apoptotic cells in 786-0 cells with knockdown EpoR expression. Our results suggested that Epo/EpoR pathway was involved in cell growth, invasion, survival, and sensitivity to the multi-kinases inhibitor Sunitinib in RCC cells.  相似文献   

10.
To identify new proteins involved in erythropoietin (Epo) signal transduction, we purified the entire set of proteins reactive with anti-phosphotyrosine antibodies from Epo-stimulated UT7 cells. Antisera generated against these proteins were used to screen a lambdaEXlox expression library. One of the isolated cDNAs encodes Gbeta2, the beta2 subunit of heterotrimeric GTP-binding proteins. Gbeta and Galpha(i) coprecipitated with the Epo receptor (EpoR) in extracts from human and murine cell lines and from normal human erythroid progenitor cells. In addition, in vitro Gbeta associated with a fusion protein containing the intracellular domain of the EpoR. Using EpoR mutants, we found that the distal part of the EpoR (between amino acids 459-479) was required for Gi binding. Epo activation of these cells induced the release of the Gi protein from the EpoR. Moreover in isolated cell membranes, Epo treatment inhibited ADP-ribosylation of Gi and increased the binding of GTP. Our results show that heterotrimeric Gi proteins associate with the C-terminal end of the EpoR. Receptor activation leads to the activation and dissociation of Gi from the receptor, suggesting a functional role of Gi protein in Epo signal transduction.  相似文献   

11.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

12.
The very low density lipoprotein receptor (VLDLr) binds diverse ligands, including urokinase-type plasminogen activator (uPA) and uPA-plasminogen activator inhibitor-1 (PAI-1) complex. In this study, we characterized the effects of the VLDLr on the internalization, catabolism, and function of the uPA receptor (uPAR) in MCF-7 and MDA-MB-435 breast cancer cells. When challenged with uPA.PAI-1 complex, MDA-MB-435 cells internalized uPAR; this process was inhibited by 80% when the activity of the VLDLr was neutralized with receptor-associated protein (RAP). To determine whether internalized uPAR is degraded, we studied the catabolism of [35S]methionine-labeled uPAR. In the absence of exogenous agents, the uPAR catabolism t(1)/(2) was 8.2 h. uPA.PAI-1 complex accelerated uPAR catabolism (t(1)/(2) to 1.8 h), while RAP inhibited uPAR catabolism in the presence (t(1)/(2) of 7.8 h) and absence (t(1)/(2) of 16.9 h) of uPA.PAI-1 complex, demonstrating a critical role for the VLDLr. When MCF-7 cells were cultured in RAP, cell surface uPAR levels increased gradually, reaching a new steady-state in 3 days. The amount of uPA which accumulated in the medium also increased. Culturing in RAP for 3 days increased MCF-7 cell motility by 2.2 +/- 0.1-fold and by 4.4 +/- 0.3-fold when 1.0 nM uPA was added. The effects of RAP on MCF-7 cell motility were entirely abrogated by an antibody which binds uPA and prevents uPA binding to uPAR. MCF-7 cells that were cultured in RAP demonstrated increased levels of activated mitogen-activated protein kinases. Furthermore, the MEK inhibitor, PD098059, decreased the motility of RAP-treated cells without affecting control cultures. These studies suggest a model in which the VLDLr regulates autocrine uPAR-initiated signaling and thereby regulates cellular motility.  相似文献   

13.
14.
Invasion of distant tissues by tumor cells is the primary cause of therapeutic failure in the treatment of malignant lung cancer cells. Receptor activator of nuclear factor-κB ligand (RANKL) and its receptor, RANK, play a key role in osteoclastogenesis and tumor metastasis. Intercellular adhesion molecule-1 (ICAM-1, also called CD54), a member of the immunoglobulin supergene family, is an inducible surface glycoprotein that mediates adhesion-dependent cell-to-cell interactions. The effects of RANKL on cell migration and ICAM-1 expression in human lung cancer cells are largely unknown. We found that RANKL directed the migration and increased ICAM-1 expression in human lung cancer (A549) cells. Pretreatment of A549 cells with the MAPK kinase (MEK) inhibitor PD98059 or U0126 inhibited RANKL-mediated migration and ICAM-1 expression. Stimulation of cells with RANKL increased the phosphorylation of MEK and extracellular signal-regulating kinase (ERK). In addition, an NF-κB inhibitor (PDTC) and IκB protease inhibitor (TPCK) also inhibited RANKL-mediated cell migration and ICAM-1 up-regulation. Taken together, these results suggest that the RANKL and RANK interaction acts through MEK/ERK, which in turn activates NF-κB, resulting in the activation of ICAM-1 and contributing to the migration of human lung cancer cells.  相似文献   

15.
Stem cell factor (SCF) can be considered a cardinal cytokine in mast cell biology as it affects mast cell differentiation, survival, and migration. The objective of this study was to investigate the role of two mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, in SCF-induced cell migration. This was examined in mouse mast cells by using PD 098059 and SB203580, which are specific inhibitors of mitogen-induced extracellular kinase (MEK) and p38 MAP kinase, respectively. SCF induced a rapid and transient activation of ERK and p38 in a dose-dependent manner. Inhibition of p38 activity by SB203580 was paralleled with a marked reduction of migration toward SCF, whereas the effect of the MEK inhibitor was less pronounced. This is the first report of a physiological function of SCF-dependent activation of p38. Whether p38-mediated mast cell migration is a possible target for suppression of mast cell hyperplasia remains to be determined.  相似文献   

16.
The hormone erythropoietin (Epo) is essential for red blood cell development. Epo binds a high affinity receptor on the surface of erythroid progenitor cells, stimulating receptor dimerization and activation of the intracellular signal transduction pathways that support erythroid cell survival, proliferation and differentiation. Biochemical and structural analysis of the erythropoietin receptor (EpoR) is revealing the molecular mechanisms of EpoR function, leading the way to the development of small molecule Epo mimetics. This review focuses on the role EpoR dimerization plays in receptor function.  相似文献   

17.
Phosphatidic acid (PA), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (SPP) are naturally occurring phospholipids which induce a variety of effects as extracellular messengers. In this study, we compared the effects of these phospholipid signaling molecules on the migration of invasive and noninvasive breast cancer cell lines, an index of the metastatic potential of these cells. As previously demonstrated, invasive MDA-MB-231 breast cancer cells exhibited increased constitutive (nonstimulated) migration in comparison to poorly invasive MCF-7 cells. Phosphatidic acid employed at nanomolar concentrations markedly potentiated migration of the invasive cells but had no effect on migration of either the noninvasive MCF-7 cells or nonneoplastic human epithelial cells. Lysophosphatidic acid and sphingosine 1-phosphate inhibited both the directed (chemotactic) and random (chemokinetic) migration of MDA-MB-231 cells. Experiments were undertaken to characterize the signaling pathway involved in constitutive and PA-stimulated migration of MDA-MB-231 cells. The tyrosine kinase inhibitors staurosporine and genistein inhibited constitutive and PA-induced migration in a dose-dependent manner, consistent with a role for tyrosine phosphorylation in the migratory response. In addition, the phosphatidylinositol (PI) 3' kinase inhibitors wortmannin and LY294002 strongly inhibited both the constitutive and PA-stimulated migration of the invasive breast cancer cells, indicating that PI-3' kinase plays an important role in the metastatic migration of breast cancer cells. Finally, PA-induced migration of MDA-MB-231 was markedly attenuated by pretreatment of cells with Clostridium difficile Toxin B, pertussis toxin and suramin, implying a role for a Gi receptor-dependent process involving activation of the small GTP-binding protein Rho. Since an enhanced ability to migrate heightens the metastatic potential of cells within solid tumors, our results suggest that the metastatic capabilities of breast cancer cells may be enhanced by a receptor-driven cellular process initiated by phosphatidic acid or related lipid phosphate messengers.  相似文献   

18.
The role of ethanol or its metabolites on breast neoplasm has not been characterized. We hypothesized that ethanol may alter the growth rate of human breast tumor epithelial cells by modulating putative growth-promoting signaling pathways such as p44/42 mitogen-activated protein kinases (MAPKs). The MCF-7 cell line, considered a suitable model, was used in these studies to investigate the effects of ethanol on [(3)H]thymidine incorporation, cell number, and p44/42 MAPK activities in the presence or absence of a MAPK or extracellular signal-regulated kinase ERK-1, and (MEK1) inhibitor (PD098059). Treatment of MCF-7 cells with a physiologically relevant concentration of ethanol (0.3% or 65 mM) increased p44/42 activities by an average of 400% (P < 0.02), and subsequent cell growth by 200% (P < 0.05) in a MEK1 inhibitor (PD098059)-sensitive fashion, thus suggesting that the Ras/MEK/MAPK signaling pathways are crucial for ethanol-induced MCF-7 cell growth.  相似文献   

19.
NF-kappaB has been well documented to play a critical role in signaling cell stress reactions. The extracellular signal-regulated kinase (ERK) regulates cell proliferation and survival. GADD45beta is a primary cell cycle element responsive to NF-kappaB activation in anti-apoptotic responses. The present study provides evidence demonstrating that NK-kappaB, ERK and GADD45beta are co-activated by ionizing radiation (IR) in a pattern of mutually dependence to increase cell survival. Stress conditions generated in human breast cancer MCF-7 cells by the administration of a single exposure of 5 Gy IR resulted in the activation of ERK but not p38 or JNK, along with an enhancement of the NF-kappaB transactivation and GADD45beta expression. Overexpression of dominant negative Erk (DN-Erk) or pre-exposure to ERK inhibitor PD98059 inhibited NF-kappaB. Transfection of dominant negative mutant IkappaB that blocks NF-kappaB nuclear translocation, inhibited ERK activity and GADD45beta expression and increased cell radiosensitivity. Interaction of p65 and ERK was visualized in living MCF-7 cells by bimolecular fluorescence complementation analysis. Antisense inhibition of GADD45beta strikingly blocked IR-induced NF-kappaB and ERK but not p38 and JNK. Overall, these results demonstrate a possibility that NF-kappaB, ERK, and GADD45beta are able to coordinate in a loop-like signaling network to defend cells against the cytotoxicity induced by ionizing radiation.  相似文献   

20.
We observed that lysophosphatidylglycerol (LPG) stimulates chemotactic migration in human natural killer (NK) cells. The LPG-induced chemotactic migration of NK cells was completely inhibited by pertussis toxin (PTX). LPG also stimulated the extracellular signal-regulated kinase (ERK) and Akt activities in NK cells. LPG-stimulated ERK activity was inhibited by PTX, indicating the involvement of PTX-sensitive G-proteins. The preincubation of NK cells with an ERK inhibitor (PD98059) or phosphoinositide-3-kinase (PI3K) inhibitors (wortmannin and LY294002) completely inhibited LPG-induced chemotactic migration, suggesting the essential role of ERK and PI3K in the process. Moreover, LPG-induced chemotactic migration in NK cell was inhibited by Ki16425, an LPA1/3 receptor-selective antagonist, suggesting the involvement of the Ki16425-sensitive G-protein coupled receptor (GPCR) in the process. Taken together, the results indicate that LPG stimulates chemotactic migration in NK cells through GPCR, suggesting a new function of LPG as a modulator of NK cell functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号