首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fluorescent derivative of paclitaxel, 3'-N-m-aminobenzamido-3'-N-debenzamidopaclitaxel (N-AB-PT), has been prepared in order to probe paclitaxel-microtubule interactions. Fluorescence spectroscopy was used to quantitatively assess the association of N-AB-PT with microtubules. N-AB-PT was found equipotent with paclitaxel in promoting microtubule polymerization. Paclitaxel and N-AB-PT underwent rapid exchange with each other on microtubules assembled from GTP-, GDP-, and GMPCPP-tubulin. The equilibrium binding parameters for N-AB-PT to microtubules assembled from GTP-tubulin were derived through fluorescence titration. N-AB-PT bound to two types of sites on microtubules (K(d1) = 61 +/- 7.0 nM and K(d2) = 3.3 +/- 0.54 microM). The stoichiometry of each site was less than one ligand per tubulin dimer in the microtubule (n(1) = 0.81 +/- 0.03 and n(2) = 0.44 +/- 0.02). The binding experiments were repeated after exchanging the GTP for GDP or for GMPCPP. It was found that N-AB-PT bound to a single site on microtubules assembled from GDP-tubulin with a dissociation constant of 2.5 +/- 0.29 microM, and that N-AB-PT bound to a single site on microtubules assembled from GMPCPP-tubulin with a dissociation constant of 15 +/- 4.0 nM. It therefore appears that microtubules contain two types of binding sites for paclitaxel and that the binding site affinity for paclitaxel depends on the nucleotide content of tubulin. It has been established that paclitaxel binding does not inhibit GTP hydrolysis and microtubules assembled from GTP-tubulin in the presence of paclitaxel contain almost exclusively GDP at the E-site. We propose that although all the subunits of the microtubule at steady state are the same "GDP-tubulin-paclitaxel", they are formed through two paths: paclitaxel binding to a tubulin subunit before its E-site GTP hydrolysis is of high affinity, and paclitaxel binding to a tubulin subunit containing hydrolyzed GDP at its E-site is of low affinity.  相似文献   

2.
Microtubule-associated protein, MAP2, is a calcium-binding protein   总被引:1,自引:0,他引:1  
Calcium has been suggested to be an important element in the regulation of microtubule dynamics 'in vivo'. In this report we have analyzed the possibility that microtubule-associated protein 2 (MAP2) binds calcium. MAP2 was blue-stained with the cationic carbocyanine dye 'stains-all' in a similar way to that of calcium-binding proteins and bound 45Ca as estimated from dot-blotting experiments. The calcium-binding characteristics of MAP2, determined by equilibrium dialysis, indicated that MAP2 bound about 3 mol (n = 2.9 +/- 0.4) of calcium per mol of protein (Kd = (0.9 +/- 0.2).10(-5) M). Analysis of the Scatchard plots from equilibrium dialysis and dot-blot assays indicated that MAP2 also presented low-affinity calcium-binding sites (Kd = (0.3 +/- 0.2).10(-4) M). Incubation of nitrocellulose blots of proteolytically digested MAP2 with 45Ca indicated that the calcium-binding sites were located in the region that is not involved in the interaction with tubulin (projection region).  相似文献   

3.
Taxol-stabilised erythrocyte microtubules assembled less readily than similarly prepared brain microtubules on adding 10(-4) M-10(-3) M concentrations of calcium at 2 degrees C. Scatchard plot analyses of the high affinity calcium binding sites showed that the erythrocyte tubulin contained only 0.9 high affinity binding sites per dimer compared to 1.4 binding sites per dimer for brain tubulin. Association constants, however, for calcium binding to both erythrocyte and brain tubulin were similar (3.0 x 10(-6) M and 2.1 x 10(-6) M). The beta-tubulin subunit appeared to be responsible for the lower calcium binding ability of erythrocyte tubulin as shown by a gel overlay assay with 45Ca. Strains-all, a dye that stains many calcium binding proteins blue, did not stain erythrocyte beta-tubulin or its chymotryptic C-terminal fragment blue as was the case for brain beta-tubulin and its chymotryptic C-terminal fragment. We suggest that the lower calcium binding ability of erythrocyte beta-tubulin may be implicated in the differential behaviour of erythrocyte microtubules.  相似文献   

4.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

5.
L D Ward  S N Timasheff 《Biochemistry》1988,27(5):1508-1514
The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

7.
Dephosphorylation-induced interactions of neurofilaments with microtubules   总被引:6,自引:0,他引:6  
Effects of dephosphorylation on interactions of neurofilaments (NFs) with microtubules (MTs) were studied by the cosedimentation method. Centrifugation conditions were chosen so that MTs pelleted but NFs did not. While NFs isolated from bovine spinal cords did not cosediment with MTs polymerized in the presence of taxol, NFs dephosphorylated with Escherichia coli alkaline phosphatase began to coprecipitate with MTs. The dephosphorylated NFs bound to MTs but not to the unpolymerized tubulin dimer. The binding was not observed in the presence of high salt or with MTs containing microtubule-associated proteins. The cosedimentation experiments using purified NF subunit proteins showed that the dephosphorylation-induced binding of NFs to MTs was mediated by the largest subunit of NF (NF-H). Negative staining electron microscopy confirmed bindings of the dephosphorylated NFs and NF-H to MTs. Densitometric measurement of the bound and unbound NF-H after sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the binding of the dephosphorylated NF-H to MT was saturable and gave the following binding parameters. Approximately 1 mol of NF-H bound per 10 mol of tubulin dimer with a high affinity site (Kd = 3.8 x 10(-8) M) and per 16 mol of tubulin dimer with a low affinity site (Kd = 1.1 x 10(-7) M).  相似文献   

8.
Rhizoxin binding to tubulin at the maytansine-binding site   总被引:1,自引:0,他引:1  
The binding of rhizoxin, a potent inhibitor of mitosis and in vitro microtubule assembly, to porcine brain tubulin was studied. Tubulin possesses one binding site for rhizoxin per molecule with a dissociation constant (Kd) of 1.7.10(-7) M. Ansamitocin P-3, a homologue of maytansine, was a competitive inhibitor of rhizoxin binding, with an inhibition constant of 1.3.10(-7) M. Vinblastine also inhibited rhizoxin binding, but was not fully competitive, and the inhibition constant was 2.9.10(-6) M. In contrast, both rhizoxin and ansamitocin P-3 were potent inhibitors of vinblastine binding. Rhizoxin inhibited tau-promoted tubulin assembly, but it, differing from vinblastine, did not induce tubulin aggregation into spirals, even at a concentration as high as 2.10(-5) M. In addition, rhizoxin strongly inhibited vinblastine-induced tau-dependent tubulin aggregation. Rhizoxin binding to tubulin was completely independent from colchicine binding. These effects resemble those of maytansine. The results suggested that rhizoxin binds to the maytansine-binding site and that the binding sites of rhizoxin and vinblastine are not the same.  相似文献   

9.
The interactions of the vinca alkaloid drugs catharanthine and vindoline with tubulin have been investigated and compared with those of vinblastine and vincristine. Both drugs were found to be less effective in bringing about the inhibition of tubulin self-assembly into microtubules than vincristine and vinblastine, the drug to protein molar ratio required being 3 orders of magnitude greater. An analytical ultracentrifuge study has shown that catharanthine can induce the self-association of tubulin into linear indefinite polymers with an efficacy that is 75% that of vinblastine or vincristine, the intrinsic dimerization constant for the liganded protein being K2 congruent to 1 x 10(5) M-1. The effect of vindoline was marginally detectable. Binding studies of catharanthine using the gel batch and fluorescence perturbation techniques showed a polymerization-linked binding of one catharanthine molecule per tubulin alpha-beta dimer with a binding constant of (2.8 +/- 0.4) x 10(3) M-1. For vindoline, binding to tubulin was marginally detectable by fluorescence spectroscopy, although addition of vindoline to tubulin did generate a difference spectrum. It was concluded that the binding of vinblastine/vincristine to tubulin and its consequences are determined by the interaction of the indole part of catharanthine with tubulin, the role of vindoline being that of an anchor.  相似文献   

10.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

11.
The goal of this work was to determine the binding properties and location of 4',6-diamidino-2-phenylindole (DAPI) complexed with tubulin. Using fluorescence anisotropy, a dissociation constant of 5.2+/-0.4 microM for the DAPI-tubulin complex was determined, slightly lower than that for the tubulin S complex. The influence of the C-terminal region on the binding of DAPI to tubulin was also characterized. Using FRET experiments, and assuming a kappa2 value of 2/3, distances between Co2+ bound to its high-affinity binding site and the DAPI-binding site and 2',3'-O-(trinitrophenyl)guanosine 5'-triphosphate bound to the exchangeable nucleotide and the DAPI-binding site were found to be 20+/-2 A and 43+/-2 A, respectively. To locate potential DAPI-binding sites on tubulin, a molecular modeling study was carried out using the tubulin crystal structure and energy minimization calculations. The results from the FRET measurements were used to limit the possible location of DAPI in the tubulin structure. Several candidate binding sites were found and these are discussed in the context of the various properties of bound DAPI.  相似文献   

12.
Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.  相似文献   

13.
14.
Binding of brain spectrin to the 70-kDa neurofilament subunit protein   总被引:1,自引:0,他引:1  
Brain spectrin, or fodrin, a major protein of the subaxolemmal cytoskeleton, associates specifically in in vitro assays with the 70-kDa neurofilament subunit (NF-L) and with glial filaments from pig spinal cord. As an initial approach to the identification of the fodrin-binding proteins, a crude preparation of neurofilaments was resolved by electrophoresis on SDS/polyacrylamide gels and then transferred to nitrocellulose paper, which was 'blotted' with 125I-fodrin. A significant binding of fodrin was observed on polypeptides of 70 kDa, 52 kDa and 20 kDa. These polypeptides were further purified and identified respectively as the NF-L subunit of neurofilaments, the glial fibrillary acidic protein (GFP) and the myelin basic protein. The binding of fodrin to NF-L was reversible and concentration-dependent. The ability of the pure NF-L and GFP to form filaments was used to quantify their association with fodrin. a) The binding of fodrin to reassembled NF-L was saturable with a stoichiometry of 1 mol fodrin bound/50 +/- 10 mol NF-L and an apparent dissociation constant Kd = 4.3 x 10(-7) M. b) The binding involved the N-terminal domain of the polypeptide chain derived from the [2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine] cleavage of NF-L. c) Binding occurred optimally at physiological pH (6.8-7.2) and salt concentrations (50 mM). d) Interestingly, calmodulin, a Ca2+-binding protein, which has been shown to bind to fodrin, was found to reinforce the binding of fodrin to the NF-L, at Ca2+ physiological concentrations. The binding of fodrin to pure neurofilaments was not affected by the presence of the 200-kDa (NF-H) and the 160-kDa (NF-M) subunits. The apparent dissociation constant for the binding of fodrin to NF-L in the pure NF was 1.0 x 10(-6) M with 1 mol fodrin bound/80 +/- 10 mol NF-L. Moreover, the binding of fodrin to GFP, demonstrated in blot assays, was confirmed by cosedimentation experiments. The apparent dissociation constant Kd for the fodrin binding was 2.8 x 10(-7) M and the maximum binding was 1 mol fodrin/55 +/- 10 mol GFP.  相似文献   

15.
Curacin A is a potent competitive inhibitor of colchicine binding to tubulin, and it inhibits the growth of tumor cells. We prepared [(14)C]curacin A biosynthetically to investigate its interaction with tubulin. Binding was rapid, even at 0 degrees C, with a minimum k(f) of 4.4 x 10(3) M(-1) s(-1). We were unable to demonstrate any dissociation of the [(14)C]curacin A from tubulin. Consistent with these observations, the K(a) value was so high that an accurate determination by Scatchard analysis was not possible. The [(14)C]curacin A was released from tubulin following urea treatment, indicating that covalent bond formation does not occur. We concluded that curacin A binds more tightly to tubulin than does colchicine. Besides high-affinity binding to the colchicine site, we observed significant superstoichiometric amounts of the [(14)C]curacin A bound to tubulin, and Scatchard analysis confirmed the presence of two binding sites of relatively low affinity with a K(a) of 3.2 x 10(-5) M(-1).  相似文献   

16.
The interaction of vinblastine with calf brain tubulin has been studied by velocity sedimentation, gel filtration, and fluorescence. It has been established that vinblastine induces the stable tubulin dimers to dimerize further to tetramers. The sedimentation patterns at low vinblastine concentration were analyzed by the ligand-induced dimerization theory of Cann and Goad ((1972) Arch. Biochem. Biophys. 153, 603-609). The association constant and stoichiometry for the binding of vinblastine to tubulin, determined by gel filtration and spectrofluorometry, were (2.3 +/- 0.1) X 10(4) liters/mol at 25 degrees and two vinblastine binding sites per tubulin dimer of molecular weight 110,000. The binding of vinblastine to tubulin is characterized by an enthalpy change of 5.8 kcal/mol and a positive unitary entropy change. Binding of vinblastine did not induce any significant conformational changes in tubulin as monitored by circular dichroism. However, the vinblastine-tubulin complex displayed an ultraviolet difference spectrum, which appears to reflect mostly the transfer of vinblastine to a less polar environment. Besides binding vinblastine, tubulin was shown to bind vincristine with identical free energy and stoichiometry and to have a single binding site for 8-anilino-1-naphthalene sulfonic acid per tubulin dimer, which is independent of those for vinblastine.  相似文献   

17.
The binding of Zn2+ to tubulin and the ability of this cation to promote the polymorphic assembly of the protein were examined. Equilibrium binding showed the existence of more than 60 potential Zn2+ binding sites on the dimer, including a number of high-affinity sites. The number of high-affinity sites, estimated by using a standard amount of phosphocellulose to remove more weakly bound Zn2+, reached a maximum of 6-7.5 with increasing levels of Zn2+ in the incubation solution. The number also increased with time of incubation at a single Zn2+ concentration. It is suggested that tubulin is slowly denatured in the presence of Zn2+, exposing more binding sites. Cu+ and Cd2+ were effective inhibitors of Zn2+ binding; Mg2+, Mn2+, and Co2+ were much less effective, and Ca2+ was without effect. Zn2+ does not replace the tightly bound Mg2+. GTP reduces the amount of Zn2+ binding under equilibrium conditions and the amount bound to high-affinity sites. Zinc-induced protofilament sheets are produced at a Zn2+/tubulin ratio of 5 in the presence of 0.5 mM GTP, conditions where about two to three Zn2+ ions would be bound to the dimer. At higher GTP concentrations, less assembly occurred, and the products were narrower sheets and microtubules. Zn2+-tubulin, isolated from phosphocellulose, will not assemble unless Mg2+ and dimethyl sulfoxide (Me2SO) or more Zn2+ is added. Broad protofilament sheets, formed from Zn2+-tubulin in the presence of Mg2+ and Me2SO, contain slightly more than one Zn2+ per dimer. It is concluded that Zn2+ stimulates tubulin assembly by binding directly to the protein, not via a ZnGTP complex.  相似文献   

18.
A protein which showed high affinity for calcium ions was isolated from bull seminal vesicle secretion and seminal plasma. Its calcium-binding activity depended on the ionic strength and pH of the medium. The dissociation constant was 7-7 X 10(-7) M and there were 14 binding sites per protein molecule. The molecular weight of calcium-binding protein from bull seminal vesicle secretion, estimated by the gel filtration method, was 110,000. The protein may be involved in the regulation of the calcium ion level in seminal plasma.  相似文献   

19.
The pH dependence of the apparent tetramer to dimer dissociation constant has been determined at 20 degrees for both oxy- and deoxyhemoglobins A and Kansas. These measurements were made by three different procedures: gel chromatography, sedimentation velocity, and kinetic methods in either of three buffer systems: 0.05 M cacodylate, Tris, or glycine with 1 mM EDTA and 0.1 M NaCl between pH 6.5 and 11. The tetramer-dimer dissociation constant of human oxyhemoglobin A decreases from about 3.2 X 10(-6) M at pH 6.0 to about 3.2 X 10(-8) M at pH 8.5. The slope of this line indicates that the dissociation of tetramer to dimer is accompanied by the uptake of about 0.6 protons per mol of tetramer in this region. The corresponding dissociation constant for deoxyhemoglobin in the same pH region increases apparently almost linearly from 1.0 x 10(-12) M at pH 6.5 to about 1.0 x 10(-5) M at pH 11. To dimer is associated with the release of about 1.6 protons per mol of tetramer. Comparison of these data with the known proton release accompanying the oxygenation of tetramers confirms that the pH dependence of oxygen binding by dimers must be very small. The present data predict that the overall proton release or uptake per oxygen bound by dimer should be less than 0.1. The tetramer-dimer dissociation equilibria of oxy- and deoxyhemoglobins above pH 8.5 have identical pH dependences. In this range the dissociation constant of deoxy-Hb is about one-tenth that of oxyhemoglobin. Human oxyhemoglobin Kansas is known to have an enhanced tetramer-dimer dissociation compared with that of hemoglobin A. Below pH 8.5 the tetramer-dimer dissociation constant of Hb Kansas is about 400 times greater than that of HbA in the absence of phosphate buffers. In contrast, the tetramer-dimer dissociation constants of deoxyhemoglobins A and Kansas appear to be identical. These findings are consistent with previous structural observations on these hemoglobins. The data on the tetramer-dimer dissociation of human hemoglobin were used to calculate the total free energy of binding of oxygen to the tetramer and the median oxygen pressure on the basis of fundamental linkage relations and a pH-independent estimate of the total free energy of binding oxygen to dimer. Simulated oxygen binding curves were generated with the equations of Ackers and Halvorson (Ackers, G. K., and Halvorson, H. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 4312-4316) by making two assumptions: (a) that the dimers are noncooperative and pH-independent in O2 binding and (b) that the distribution of cooperative energy in the oxygenation of tetramers is independent of pH. We have compared these simulations with experimental data obtained at low protein concentrations (30 to 124 muM heme) to show that the variation in oxygen affinity with pH can be described in terms of the subunit equilibria. We conclude that an accurate analysis of the contributions of individual oxygen binding steps to the Bohr effect cannot be made without considering the contributions of the dimers to oxygen binding...  相似文献   

20.
R P Frigon  S N Timasheff 《Biochemistry》1975,14(21):4567-4573
The thermodynamic parameters of the magnesium ion induced self-association of calf brain tubulin in pH 7.0, 0.01 M phosphate buffer containing 10(-4) M GTP, were determined from sedimentation velocity experiments. This reaction proceeds by an isodesmic mechanism terminated by the highly favored formation of a closed ring shaped polymer of degree of association 26 +/- 4. Analysis of the variation of the apparent dimerization constant in the isodesmic mechanism s,ows that this self-association is characterized by positive enthalpy, entropy, heat capacity, and molar volume changes, as well as the binding of one additional magnesium ion, which is probably not involved as a bridge between the protein molecules. The addition of the last monomeric subunit has a free energy which is about three times that of dimer formation. Under the conditions of these experiments, tubulin binds 48 +/- 5 magnesium ions with a free energy of --2.8 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号