首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the soluble protein fraction between the freshly isolated cyanobiont of lichen Peltigera membranacea, the corresponding free-living strain, and Nostoc punctiforme were analyzed. One protein, which was among the most prominent proteins of the freshly isolated cyanobiont, was expressed at a lower level in the corresponding free-living strain and was not detected at all on the two-dimensional gels of N. punctiforme. This protein was partially sequenced, and the corresponding open reading frame (ORF) in the N. punctiforme genome was identified. This ORF contains a fasciclin domain typical of a class of surface-associated proteins involved in cell adhesion. Similar fasciclin motif-containing genes have previously been shown to be symbiotically induced in other symbiotic systems.  相似文献   

2.
3.
Sergeeva E  Liaimer A  Bergman B 《Planta》2002,215(2):229-238
The ability of cyanobacteria to produce the phytohormone indole-3-acetic acid (IAA) was demonstrated. A colorimetric (Salkowski) screening of 34 free-living and symbiotically competent cyanobacteria, that represent all morphotypes from the unicellular to the highly differentiated, showed that auxin-like compounds were released by about 38% of the free-living as compared to 83% of the symbiotic isolates. The endogenous accumulation and release of IAA were confirmed immunologically (ELISA) using an anti-IAA antibody on 10 of the Salkowski-positive strains, and the chemical authenticity of IAA was further verified by chemical characterization using gas chromatography-mass spectrometry in Nostoc PCC 9229 (isolated from the angiosperm Gunnera) and in Nostoc 268 (free-living). Addition of the putative IAA precursor tryptophan enhanced IAA accumulation in cell extracts and supernatants. As the genome of the symbiotically competent Nostoc PCC 73102 contains homologues of key enzymes of the indole-3-pyruvic acid pathway, a transaminase and indolepyruvate decarboxylase (IpdC), the putative ipdC gene from this cyanobacterium was cloned and used in Southern blot analysis. Out of 11 cyanobacterial strains responding positively in the Salkowski/ELISA test, ipdC homologues were found in 4. A constitutive and possibly tryptophan-dependent production of IAA via the indole-3-pyruvic acid pathway is therefore suggested. The possible role of IAA in cyanobacteria in general and in their interactions with plants is discussed.  相似文献   

4.
DNA amplification fingerprinting (DAF) of 17 cyanobacterial isolates belonging to symbiotic and free-living forms of 6 different genera was done. The dendrogram analysis of 17 cyanobacterial cultures revealed three major clusters. All Westiellopsis cultures formed the first major cluster and their nucleotide relatedness ranged between 71-93%. In the second major cluster, the symbiotic cyanobacterium Anabaena sp dominated and all Anabaena cultures showed 60-75% similarity with each other. Nostoc muscorum is related to Anabaena variabilis by 85% and formed the third major cluster. The dendrogram analysis of cyanobacterial isolates clearly revealed that free-living cyanobacterial cultures were closely related with each other and were diverse from the symbiotic forms.  相似文献   

5.
PCR amplification techniques were used to compare cyanobacterial symbionts from a cyanobacterium-bryophyte symbiosis and free-living cyanobacteria from the same field site. Thirty-one symbiotic cyanobacteria were isolated from the hornwort Phaeoceros sp. at several closely spaced locations, and 40 free-living cyanobacteria were isolated from the immediate vicinity of the same plants. One of the symbiotic isolates was a species of Calothrix, a genus not previously known to form bryophyte symbioses, and the remainder were Nostoc spp. Of the free-living strains, two were Calothrix spp., three were Chlorogloeopsis spp. and the rest were Nostoc spp. All of the symbiotic and all but one of the free-living strains were able to reconstitute the symbiosis with axenic cultures of both Phaeoceros and the liverwort Blasia sp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the regions flanking the 16S-23S rRNA internal transcribed spacer. With one exception, the two techniques produced complementary results and confirmed for the first time that a diversity of symbiotic cyanobacteria infect Phaeoceros in the field. Symbionts from adjacent colonies were different as often as they were the same, showing that the same thallus could be infected with many different cyanobacterial strains. Strains found to be identical by the techniques employed here were often found as symbionts in different thalli at the same locale but were never found free-living. Only one of the free-living strains, and none of the symbiotic strains, was found at more than one sample site, implying a highly localized distribution of strains.  相似文献   

6.
Nostoc punctiforme is an oxygenic photoautotrophic cyanobacterium with multiple developmental states, which can form nitrogen-fixing symbioses with a variety of terrestrial plants. 3D LC/MS/MS shotgun peptide sequencing was used to analyze the proteome when N. punctiforme is grown in continuous moderate light with ammonia as the nitrogen source. The soluble proteome includes 1575 proteins, 50% of which can be assigned to core metabolic and transport functions. Another 39% are assigned to proteins with no known function, a substantially higher fraction than in the Escherichia coli proteome. Many expressed proteins protect against oxidative and light stress. Seventy-one sensor histidine kinases, response regulators, and serine/threonine kinases, individually and as hybrid, multidomain proteins, were identified, reflecting a substantial capacity to sense and respond to environmental change. Proteins encoded by each of the five N. punctiforme plasmids were identified, as were 10 transposases, reflecting the plasticity of the N. punctiforme genome. This core proteome sets the stage for comparison with that of other developmental states.  相似文献   

7.
Molecular mechanisms behind adaptations in the cyanobacterium (Nostoc sp.) to a life in endosymbiosis with plants are still not clarified, nor are the interactions between the partners. To get further insights, the proteome of a Nostoc strain, freshly isolated from the symbiotic gland tissue of the angiosperm Gunnera manicata Linden, was analyzed and compared with the proteome of the same strain when free-living. Extracted proteins were separated by two-dimensional gel electrophoresis and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with tandem mass spectrometry. Even when the higher percentage of differentiated cells (heterocysts) in symbiosis was compensated for, the majority of the proteins detected in the symbiotic cyanobacteria were present in the free-living counterpart, indicating that most cellular processes were common for both stages. However, differential expression profiling revealed a significant number of proteins to be down-regulated or missing in the symbiotic stage, while others were more abundant or only expressed in symbiosis. The differential protein expression was primarily connected to i) cell envelope-associated processes, including proteins involved in exopolysaccharide synthesis and surface and membrane associated proteins, ii) to changes in growth and metabolic activities (C and N), including upregulation of nitrogenase and proteins involved in the oxidative pentose phosphate pathway and downregulation of Calvin cycle enzymes, and iii) to the dark, microaerobic conditions offered inside the Gunnera gland cells, including changes in relative phycobiliprotein concentrations. This is the first comprehensive analysis of proteins in the symbiotic state.  相似文献   

8.
The flavonoid naringin was found to induce the expression of hrmA, a gene with a symbiotic phenotype in the cyanobacterium Nostoc punctiforme. A comparative analysis of several flavonoids revealed the 7-O-neohesperidoside, 4'-OH, and C-2-C-3 double bond in naringin as structural determinants of its hrmA-inducing activity.  相似文献   

9.
The filamentous cyanobacterium Nostoc punctiforme forms symbioses with plants. Disruption of the catalytic domain of the N. punctiforme adenylate cyclase (CyaC) significantly increased symbiotic competence, whereas reduced infectivity was observed in a mutant with a disruption close to the N terminus of CyaC. The total cellular cyclic AMP levels were significantly reduced in both mutants.  相似文献   

10.
Nostoc punctiforme is a phenotypically complex, filamentous, nitrogen-fixing cyanobacterium, whose vegetative cells can mature in four developmental directions. The particular developmental direction is determined by environmental signals. The vegetative cell cycle is maintained when nutrients are sufficient. Limitation for combined nitrogen induces the terminal differentiation of heterocysts, cells specialized for nitrogen fixation in an oxic environment. A number of unique regulatory events and genes have been identified and integrated into a working model of heterocyst differentiation. Phosphate limitation induces the transient differentiation of akinetes, spore-like cells resistant to cold and desiccation. A variety of environmental changes, both positive and negative for growth, induce the transient differentiation of hormogonia, motile filaments that function in dispersal. Initiation of the differentiation of heterocysts, akinetes and hormogonia are hypothesized to depart from the vegetative cell cycle, following separate and distinct events. N. punctiforme also forms nitrogen-fixing symbiotic associations; its plant partners influence the differentiation and behavior of hormogonia and heterocysts. N. punctiforme is genetically tractable and its genome sequence is nearly complete. Thus, the regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics.  相似文献   

11.
The cyanobacterium Nostoc sp. strain UCD 7801, immediately after separation from pure cultures of a reconstituted symbiotic association with the bryophyte Anthoceros punctatus, exhibited a rate of light-dependent CO2 fixation that was eightfold lower than that measured in the free-living growth state. Ribulose bisphosphate carboxylase/oxygenase (RuBPC/O) specific activity was also eightfold lower in cell extracts of symbiotic strain 7801 relative to that in free-living cultures. The in vitro activity from symbiotic strain 7801 could not be increased by incubation under the standard RuBPC/O activation conditions. Polyclonal antibodies against the RuBPC/O large subunit were used in an enzyme-linked immunosorbent assay to determine that RuBPC/O accounted for 4.3 and 5.2% of the total protein in cell extracts of strain 7801 grown in symbiotic and free-living states, respectively. The results imply that the regulation of RuBPC/O activity in the symbiotic growth state is by a posttranslational mechanism rather than by an alteration in RuBPC/O protein synthesis. The amount of carboxyarabinitol bisphosphate required to irreversibly inhibit RuBPC/O activity of sybiotic cell extracts was 80% of that required for extracts of free-living cultures. This result indicates that any covalent modification of RuBPC/O in symbiotically associated Nostoc cells did not interfere with the ribulose bisphosphate binding site, since inactive enzyme also bound carboxyarabinitol bisphosphate.  相似文献   

12.
In response to environmental change, the cyanobacterium Nostoc punctiforme ATCC 29133 produces highly adapted filaments known as hormogonia that have gliding motility and serve as the agents of infection in symbioses with plants. Hormogonia sense and respond to unidentified plant-derived chemical signals that attract and guide them towards the symbiotic tissues of the host. There is increasing evidence to suggest that their interaction with host plants is regulated by chemotaxis-related signal transduction systems. The genome of N. punctiforme contains multiple sets of chemotaxis (che)-like genes. In this study we characterize the large che5 locus of N. punctiforme. Disruption of NpR0248, which encodes a putative CheR methyltransferase, results in loss of motility and significantly impairs symbiotic competency with the liverwort Blasia pusilla when compared with the parent strain. Our results suggest that chemotaxis-like elements regulate hormogonia function and hence symbiotic competency in this system.  相似文献   

13.
The hrmA gene of the N2-fixing cyanobacterium Nostoc punctiforme functions in repressing the formation of transitory motile filaments, termed hormogonia, by plant-associated vegetative filaments. Here, we report that anthocyanins can contribute to induction of hrmA expression. Aqueous extract from fronds of the fern Azolla pinnata, a host of symbiotic Nostoc spp., was found to be a potent inducer of hrmA-luxAB in N. punctiforme strain UCD 328. The hrmA-luxAB inducing activities of A. pinnata, as well as Azolla filiculoides, were positively correlated with levels of frond deoxyanthocyanins. Analyses of the deoxyanthocyanins in frond extracts revealed, in order of predominance, an acetylated glycoside derivative of luteolinidin (m/z 475) and of apigeninidin (m/z 459) and minor amounts of a second luteolinidin derivative. At up to 150 microM, a purified preparation of deoxyanthocyanins only weakly induced hrmA-luxAB on its own, but mixtures with hrmA-luxAB inducers (A. filiculoides extract or the flavonoid naringin) synergistically doubled to tripled their inducing activities. These results suggest that appropriately localized deoxyanthocyanins could function in plant-mediated mechanisms for repressing Nostoc spp. hormogonium formation.  相似文献   

14.
Gunnera is the only genus of angiosperms known to host cyanobacteria and the only group of land plants that hosts cyanobacteria intracellularly. Motile filaments of cyanobacteria, known as hormogonia, colonize Gunnera plants through cells in the plant's specialized stem glands. It is commonly held that Gunnera plants always possess functional glands for symbiosis. We found, however, that stem gland development did not occur when Gunnera manicata plants were grown on nitrogen (N)-replete medium but, rather, was initiated at predetermined positions when plants were deprived of combined N. While N status was the main determinant for gland development, an exogenous carbon source (sucrose) accelerated the process. Furthermore, a high level of sucrose stimulated the formation of callus-like tissue in place of the gland under N-replete conditions. Treatment of plants with the auxin transport inhibitor 1-naphthylphthalamic acid prevented gland development on N-limited medium, most likely by preventing resource reallocation from leaves to the stem. Optimized conditions were found for in vitro establishment of the Nostoc-Gunnera symbiosis by inoculating mature glands with hormogonia from Nostoc punctiforme, a cyanobacterium strain for which the full genome sequence is available. In contrast to uninoculated plants, G. manicata plants colonized by N. punctiforme were able to continue their growth on N-limited medium. Understanding the nature of the Gunnera plant's unusual adaptation to an N-limited environment may shed light on the evolution of plant-cyanobacterium symbioses and may suggest a route to establish productive associations between N-fixing cyanobacteria and crop plants.  相似文献   

15.
Genomes at the interface between bacteria and organelles   总被引:1,自引:0,他引:1  
The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles.  相似文献   

16.
In the nitrogen fixing symbiosis between Nostoc and the angiosperm Gunnera , the cyanobiont is found in stem glands and is thought to have a heterotrophic mode of nutrition. To investigate whether the photosynthetic machinery in the cyanobiont is down-regulated in the symbiosis, the presence of the phycobiliproteins, phycoerythrin and phycocyanin, and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco, EC 4.1.1.39) in cyanobionts of Gunnera magellanica Lam. and in a free-living (cultured) isolate of the cyanobacterium was studied by immunoelectron microscopy. Carboxysomes were numerous in all vegetative cells (ca 3.5 per cell section), and on an area basis they showed a high Rubisco label compared to the cytoplasm; but recalculation on a volume basis demonstrated that the carboxysomal fraction of Rubisco decreased in the cyanobiont along the plant stem. Along the whole Gunnera stem both types of phycobiliproteins were present in the symbiotic Nostoc and in amounts equivalent to or above those detected in the free-living isolate. As the symbiotic Nostoc is located intracellularly, out of reach of light in the plant stem, the findings indicate a lack of regulation of the photosynthetic protein synthesis in the symbiotic state.  相似文献   

17.
Abstract. Marked increases in growth and nitrogen content were found with Gunnera tinctoria Molina (Mirbel) plants infected (+ Nostoc ) with the cyanobacterium Nostoc punctiforme L., in comparison to uninfected (— Nostoc ) plants and this was attributed to N2-fixation by the phycobiont. Whilst host and symbiont can be grown separately, preliminary data indicates that the host plant is reliant on the cyanobacterium to meet its nitrogen requirements because it has little capacity to assimilate nitrate. Although the maximum light-saturated rate of photosynthesis was higher in the + Nostoc plants, there was no reduction in photosynthetic efficiency under lightlimiting conditions, despite marked differences in plant nitrogen status. Differences in photosynthetic rate were implicated as the major reason for the differences in plant productivity. Stomatal conductance was insensitive to changes in plant nitrogen status and did not parallel the variation in photosynthetic rates. The ecological significance of the largely invariant stomatal response and the consequences of differences in water and nitrogen-use efficiencies between + and — Nostoc plants is discussed.  相似文献   

18.

Background and Aims

Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns.

Methods

Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes.

Key Results

While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns.

Conclusions

The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte.  相似文献   

19.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

20.
The cyanobionts isolated from 10 Azolla accessions belonging to 6 species (Azolla mexicana, A. microphylla, A. rubra, A. caroliniana, A. filiculoides, A. pinnata) were cultured under laboratory conditions and analyzed on the basis of whole cell protein profiles and molecular marker dataset generated using repeat sequence primers (STRR(mod) and HipTG). The biochemical and molecular marker profiles of the cyanobionts were compared with those of the free-living cyanobacteria and symbiotic Nostoc strains from Anthoceros sp., Cycas sp. and Gunnera monoika. Cluster analysis revealed the genetic diversity among the selected strains, and identified 3 distinct clusters. Group 1 included cyanobionts from all the 10 accessions of Azolla, group 2 comprised all the symbiotic Nostoc strains, while group 3 included the free-living cyanobacteria belonging to the genera Nostoc and Anabaena. The interrelationships among the Azolla cyanobionts were further revealed by principal component analysis. Cyanobionts from A. caroliniana-A. microphylla grouped together while cyanobionts associated with A. mexicana-A. filiculoides along with A. pinnata formed another group. A. rubra cyanobionts had intermediate relationship with both the subgroups. This is the first study analyzing the diversity existing among the cultured cyanobionts of diverse Azolla species through the use of biochemical and molecular profiles and also the genetic distinctness of these free-living cyanobionts as compared to cyanobacterial strains of the genera Anabaena and Nostoc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号