首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.  相似文献   

2.
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non‐catalytic small subunit (GPPS‐SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS‐SSU was over‐expressed in tomato fruits under the control of the fruit ripening‐specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co‐expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS‐SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co‐expression of snapdragon GPPS‐SSU with the O. basilicum α–zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui‐ and monoterpene synthase activities resulted in increased levels of ZIS‐derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re‐direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.  相似文献   

3.
The precursor of all monoterpenes is the C10 acyclic intermediate geranyl diphosphate (GPP), which is formed from the C5 compounds isopentenyl diphosphate and dimethylallyl diphosphate by GPP synthase (GPPS). We have discovered that Antirrhinum majus (snapdragon) and Clarkia breweri, two species whose floral scent is rich in monoterpenes, both possess a heterodimeric GPPS like that previously reported from Mentha piperita (peppermint). The A. majus and C. breweri cDNAs encode proteins with 53% and 45% amino acid sequence identity, respectively, to the M. piperita GPPS small subunit (GPPS.SSU). Expression of these cDNAs in Escherichia coli yielded no detectable prenyltransferase activity. However, when each of these cDNAs was coexpressed with the M. piperita GPPS large subunit (GPPS.LSU), which shares functional motifs and a high level of amino acid sequence identity with geranylgeranyl diphosphate synthases (GGPPS), active GPPS was obtained. Using a homology-based cloning strategy, a GPPS.LSU cDNA also was isolated from A. majus. Its coexpression in E. coli with A. majus GPPS.SSU yielded a functional heterodimer that catalyzed the synthesis of GPP as a main product. The expression in E. coli of A. majus GPPS.LSU by itself yielded active GGPPS, indicating that in contrast with M. piperita GPPS.LSU, A. majus GPPS.LSU is a functional GGPPS on its own. Analyses of tissue-specific, developmental, and rhythmic changes in the mRNA and protein levels of GPPS.SSU in A. majus flowers revealed that these levels correlate closely with monoterpene emission, whereas GPPS.LSU mRNA levels did not, indicating that the levels of GPPS.SSU, but not GPPS.LSU, might play a key role in regulating the formation of GPPS and, thus, monoterpene biosynthesis.  相似文献   

4.
5.
Site-specific natural abundance hydrogen isotope ratios have been measured by deuterium-NMR in a wide variety of monoterpenes from numerous kinds of plants grown in different environments. Once the NMR signals have been assigned to the whole sets of isotopomers in the different molecules and schemes of connections to the parent isotopomers in the geranyl diphosphate (GPP) precursor have been defined, a very consistent set of isotopic profiles is evidenced. The results, which are incompatible with the mevalonate pathway, can be satisfactorily interpreted by considering the deoxyxylulose pathway (DOXP), which is now recognized as the usual route for monoterpene biosynthesis in plants. Strong deuterium depletion at ex-site 2 of GPP, accompanied by high isotope ratio values at site ex-6, are consistent with synthesis of GPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) molecules independently produced by the DOXP pathway. However, for a given molecular species, significant differences are observed as a function of the plant source, in particular at site ex-6 of GPP. Thus, monoterpenes from plants with a C3 metabolism are mostly characterized by relatively high values of (D/H)6, whereas C4 plants tend to show much lower values. This behavior may be attributed to more or less significant contributions of GPP resulting from the condensation of IPP with DMAPP produced by isomerization. The isotopic profile therefore enables the role of physiological and environmental factors on the relative importance of the "independent" and "isomerized" model to be estimated. More generally, isotope ratios at individual sites in geraniol can be traced back to the corresponding sites in GPP, then to sites of the IPP and DMAPP building blocks, then to the pyruvate and glyceraldehyde 3-phosphate DOXP active molecules, and finally to the carbohydrate photosynthetic precursor. Furthermore, the methylenic hydrogen atoms, which are enantiotopic in geraniol, become diastereotopic in chiral, and more specially in cyclic, monoterpenes. This provides an isotopic verification for the complete stereochemical chain of affiliation, and a way of estimating enantiomeric purity and whether intermolecular exchanges have taken place.  相似文献   

6.
《Journal of phycology》2001,37(Z3):54-54
Wise, M. L.1, Rorrer, G. L.2, Polzin, J. J.2, Croteau, R. B.1 1Institute of Biological Chemistry, Washington State University, Pullman, WA. 99164 USA; 2 Department of Chemical Engineering, Oregon State University, Corvallis, OR. 96331USA A monoterpene synthase from suspension cultures of the marine red alga Ochtodes secundiramea is shown to biosynthesize myrcene from geranyl diphosphate (GPP) using cell free extracts. This is the first in vitro characterization of a monoterpene synthase from a marine organism. Myrcene is the likely progenitor of the unusual halogenated monoterpenes characteristic of this marine alga and, as such, represents a key step in the biosynthetic pathway. Based on mechanistic considerations from reaction with the biologically relevant substrate GPP, as well as neryl diphosphate (the cis isomer of GPP) and linalyl diphosphate (LPP), the enzyme appears incapable of catalyzing the isomerization of GPP to LPP, a mechanistic feature of most terrestrial monoterpene synthases, perhaps reflecting its evolutionarily ancient origin. The ability to assay and quantitatively monitor the expression of this enzyme in suspension cultures, under strictly defined growth conditions, presents an unparalleled opportunity to delineate, at the molecular level, factors eliciting the biosynthesis of this class of secondary metabolites, to evaluate the metabolic pathway leading to halogenated monoterpenes and to investigate their role in the chemical ecology of marine algae.  相似文献   

7.
Gamma-terpinene is a monoterpene and a major component of essential oils made from citrus fruits and shows strong antioxidant activity in various assay systems. Plant gamma-terpinene synthase is a member of the monoterpene cyclase family, which produces a specific monoterpene through cyclization of geranyl diphosphate (GPP), but the monoterpene cyclases have not been fully characterized. It is necessary to prepare large amounts of gamma-terpinene synthase from Citrus unshiu (Satsuma mandarin) for the characterization, on this purpose we expressed the protein in Escherichia coli (E. coli) cells. As most monoterpene synthases have plastid-targeting signals, a gene lacking these signals was prepared and functionally expressed in E. coli cells harboring extra copies of the argU gene. The purified enzyme was incubated with GPP and the main product was confirmed to be gamma-terpinene by GC/MS.  相似文献   

8.
Geranyl diphosphate synthase (GPS) is generally considered to be responsible for the biosynthesis of monoterpene precursors only. However, reduction of LeGPS expression in tomato (Lycopersicon esculentum) by virus-induced gene silencing resulted in severely dwarfed plants. Further analysis of these dwarfed plants revealed a decreased gibberellin content, whereas carotenoid and chlorophyll levels were unaltered. Accordingly, the phenotype could be rescued by application of gibberellic acid. The dwarfed phenotype was also obtained in Arabidopsis thaliana plants transformed with RNAi constructs of AtGPS. These results link geranyl diphosphate (GPP) to the gibberellin biosynthesis pathway. They also demand a re-evaluation of the role of GPS in precursor synthesis for other di-, tri-, tetra- and/or polyterpenes and their derivatives.  相似文献   

9.
Mono- and diterpenoids are of great industrial and medical value as specialty chemicals and pharmaceuticals. Production of these compounds in microbial hosts, such as Escherichia coli, can be limited by intracellular levels of the polyprenyl diphosphate precursors, geranyl diphosphate (GPP), and geranylgeranyl diphosphate (GGPP). To alleviate this limitation, we constructed synthetic operons that express three key enzymes for biosynthesis of these precursors: (1). DXS,1-deoxy-d-xylulose-5-phosphate synthase; (2). IPPHp, IPP isomerase from Haematococcus pluvialis; and (3). one of two variants of IspA, FPP synthase that produces either GPP or GGPP. The reporter plasmids pAC-LYC and pACYC-IB, which encode enzymes that convert either FPP or GGPP, respectively, to the pigment lycopene, were used to demonstrate that at full induction, the operon encoding the wild-type FPP synthase and mutant GGPP synthase produced similar levels of lycopene. To synthesize di- or monoterpenes in E. coli using the GGPP and GPP encoding operons either a diterpene cyclase [casbene cyclase (Ricinus communis L) and ent-kaurene cyclase (Phaeosphaeria sp. L487)] or a monoterpene cyclase [3-carene cyclase (Picea abies)] was coexpressed with their respective precursor production operon. Analysis of culture extracts or headspace by gas chromatography-mass spectrometry confirmed the in vivo production of the diterpenes casbene, kaur-15-ene, and kaur-16-ene and the monoterpenes alpha-pinene, myrcene, sabinene, 3-carene, alpha-terpinene, limonene, beta-phellandrene, alpha-terpinene, and terpinolene. Construction and functional expression of GGPP and GPP operons provides an in vivo precursor platform host for the future engineering of di- and monoterpene cyclases and the overproduction of terpenes in bacteria.  相似文献   

10.
The work aims to convert the secondary slow metabolism of the terpenoid biosynthetic pathway into a primary activity in cyanobacteria and to generate heterologous products using these photosynthetic microorganisms as cell factories. Case study is the production of the 10-carbon monoterpene β-phellandrene (PHL) in Synechocystis sp. PCC 6803 (Synechocystis). Barriers to this objective include the slow catalytic activity of the terpenoid metabolism enzymes that limit rates and yield of product synthesis and accumulation. “Fusion constructs as protein overexpression vectors” were applied in the overexpression of the geranyl diphosphate synthase (GPPS) and β-phellandrene synthase (PHLS) genes, causing accumulation of GPPS up to 4% and PHLS up to 10% of the total cellular protein. Such GPPS and PHLS protein overexpression compensated for their slow catalytic activity and enabled transformant Synechocystis to constitutively generate 24 mg of PHL per g biomass (2.4% PHL:biomass, w-w), a substantial improvement over earlier yields. The work showed that a systematic overexpression, at the protein level, of the terpenoid biosynthetic pathway genes is a promising approach to achieving high yields of prenyl product biosynthesis, on the way to exploiting the cellular terpenoid metabolism for commodity product generation.  相似文献   

11.
Turner GW  Croteau R 《Plant physiology》2004,136(4):4215-4227
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.  相似文献   

12.
Grand fir (Abies grandis) is a useful model system for studying the biochemistry, molecular genetics, and regulation of defensive oleoresin formation in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced biosynthesis of monoterpenes and sesquiterpenes (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. A similarity-based cloning strategy, employing primers designed to conserved regions of existing monoterpene synthases and anticipated to amplify a 1000-bp fragment, unexpectedly yielded a 300-bp fragment with sequence reminiscent of a terpenoid synthase. Utilization of this amplicon as a hybridization probe afforded four new, full-length cDNA species from a wounded fir stem cDNA library that appeared to encode four distinct monoterpene synthases. Expression in Escherichia coli, followed by enzyme assay with geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), and analysis of the terpene products by chiral phase gas chromatography and mass spectrometry confirmed that these sequences encoded four new monoterpene synthases, including (-)-camphene synthase, (-)-beta-phellandrene synthase, terpinolene synthase, and an enzyme that produces both (-)-limonene and (-)-alpha-pinene. The deduced amino acid sequences indicated these enzymes to be 618 to 637 residues in length (71 to 73 kDa) and to be translated as preproteins bearing an amino-terminal plastid targeting sequence of 50-60 residues. cDNA truncation to delete the transit peptide allowed functional expression of the "pseudomature" forms of these enzymes, which exhibited no change in product outcome as a result of truncation. Sequence comparison revealed that these new monoterpene synthases from grand fir are members of the Tpsd gene subfamily and resemble sesquiterpene (C(15)) synthases and diterpene (C(20)) synthases from conifers more closely than mechanistically related monoterpene synthases from angiosperm species. The availability of a nearly complete set of constitutive and inducible monoterpene synthases from grand fir (now numbering seven) will allow molecular dissection of the resin-based defense response in this conifer species, and detailed study of structure-function relationships among this large and diverse family of catalysts, all of which exploit the same stereochemistry in the coupled isomerization-cyclization reaction.  相似文献   

13.
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.  相似文献   

14.
调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成   总被引:1,自引:0,他引:1  
芳樟醇是一种重要单萜,广泛应用于食品、医药、日化等工业领域.然而芳樟醇在植物中含量低且难提取,限制了其大规模生产.目前通常以酿酒酵母Saccharomyces cerevisiae作为单萜生物合成宿主,其内源类异戊二烯合成途径提供合成单萜物质的前体——香叶基二磷酸(GPP).由于该途径代谢通量较低,导致GPP供应不足,极大地降低了异源单萜的合成效率.为了调节该途径的代谢通量,构建酿酒酵母整合表达载体pRS305-tHMG1和游离表达载体pYLIS-IDI1,并分别转入酿酒酵母CEN.PK2-lC中,获得酿酒酵母工程菌LS01和LS02.同时将载体pYLIS-IDIl转入酿酒酵母工程菌LS01中,构建酿酒酵母工程菌LS03.GC-MS检测结果显示,通过提高异戊二烯二磷酸异构酶(IDIl)和羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶活性区域(tHMGl)的表达水平,最终使芳樟醇产量提高1.3倍至(127.71±7.68) tg/L.结果表明,通过调控类异戊二烯合成途径,强化GPP合成前体供给,可以显著提高酿酒酵母中芳樟醇的产量.  相似文献   

15.
In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo  相似文献   

16.
Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 — a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 — an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis.  相似文献   

17.
The expression level of geranyl diphosphate synthase (GPPS) was suspected to play a key role for geraniol production in recombinant Escherichia coli harboring an entire mevalonate pathway operon and a geraniol synthesis operon. The expression of GPPS was optimized by using ribosomal binding sites (RBSs) designed to have different translation initiation rates (TIRs). The RBS strength in TIR window of 500 arbitrary unit (au)–1400 au for GPPS appears to be suitable for balancing the geraniol biosynthesis pathway in this study. With the TIR of 500 au, the highest production titer of geraniol was obtained at a level of 1119 mg/L, which represented a 6-fold increase in comparison with the previous titer of 183 mg/L. The TIRs of GPPS locating out of range of the optimal window (500–1400 au) caused significant decreases of cell growth and geraniol production. It was suspected to result from metabolic imbalance and plasmid instability in geraniol production by inappropriate expression level of GPP synthase. Our results collectively indicated GPPS as an important regulation point in balancing a recombinant geraniol synthesis pathway. The GPPS-based regulation approach could be applicable for optimizing microbial production of other monoterpenes.  相似文献   

18.
The acyclic monoterpene myrcene is the likely progenitor of the unusual cytotoxic halogenated monoterpenes that are found in marine algae and that function as feeding deterrents to herbivores. Myrcene synthase was isolated from suspension cultures of the marine red alga Ochtodes secundiramea, representing the first enzyme of this type from a marine organism. The algal myrcene synthase produces exclusively myrcene from the natural substrate geranyl diphosphate (GDP), utilizes Mg(+2) as the required divalent metal ion cofactor, has a molecular mass of about 69 kDa, and exhibits a pH optimum near 7.2. These features are similar to those of monoterpene synthases from terrestrial organisms. When incubated with neryl diphosphate (the cis-isomer of GDP), the O. secundiramea myrcene synthase produces the cyclic monoterpene limonene, whereas incubation with (+/-)linalyl diphosphate (the tertiary allylic isomer of geranyl diphosphate) yields both acyclic and cyclic monoterpenes. These results suggest that the enzyme is incapable of isomerizing geranyl diphosphate to linalyl diphosphate, a feature common to all monoterpene cyclases from terrestrial sources. The limited catalytic capability of the myrcene synthase may reflect the ancient evolutionary origin of the producing organism. The ability to assay this enzyme in cultured algae, grown under strictly defined conditions, provides an unparalleled opportunity to delineate factors eliciting the biosynthesis of this class of secondary metabolites, to investigate the metabolic pathway leading to the halogenated monoterpenes, and to determine their role in the chemical ecology of marine algae.  相似文献   

19.
Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.  相似文献   

20.
Farnesyl diphosphate is involved in rubber biosynthesis as an initiating substrate for both polyprenol and mushroom rubber. So far, we have isolated the cDNA of a farnesyl diphosphate synthase (FPS) for the first time from a rare rubber-producing mushroom, Lactarius chrysorrheus, by the degenerate RT-PCR technique based on sequence information of FPS genes from fungi and yeasts. The open reading frame was clarified to encode a protein of 381 amino acid residues with a calculated molecular weight of 42.9 kDa. The deduced amino acid sequence of L. chrysorrheus FPS showed about 50% identity with those of other fungi and yeasts as well as plants. We expressed the cDNA of L. chrysorrheus FPS in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein. The purified obtained protein showed FPS activity in which geranyl diphosphate (GPP) served as primary substrate, with a 2.4-fold higher k(cat)/K(m) value for GPP than for dimethylallyl diphosphate (DMAPP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号