首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
With many plant–pollinator interactions undergoing change as species’ distributions shift, we require a better understanding of how the addition of new interacting partners can affect plant reproduction. One such group of floral visitors, nectar robbers, can deplete plants of nectar rewards without contributing to pollination. The addition of nectar robbing to the floral visitor assemblage could therefore have costs to the plant´s reproductive output. We focus on a recent plant colonist, Digitalis purpurea, a plant that in its native range is rarely robbed, but experiences intense nectar robbing in areas it has been introduced to. Here, we test the costs to reproduction following experimental nectar robbing. To identify any changes in the behavior of the principal pollinators in response to nectar robbing, we measured visitation rates, visit duration, proportion of flowers visited, and rate of rejection of inflorescences. To find the effects of robbing on fitness, we used proxies for female and male components of reproductive output, by measuring the seeds produced per fruit and the pollen export, respectively. Nectar robbing significantly reduced the rate of visitation and lengths of visits by bumblebees. Additionally, bumblebees visited a lower proportion of flowers on an inflorescence that had robbed flowers. We found that flowers in the robbed treatment produced significantly fewer seeds per fruit on average but did not export fewer pollen grains. Our finding that robbing leads to reduced seed production could be due to fewer and shorter visits to flowers leading to less effective pollination. We discuss the potential consequences of new pollinator environments, such as exposure to nectar robbing, for plant reproduction.  相似文献   

2.
Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant–pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant–pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Knight TM 《Oecologia》2003,137(4):557-563
Decreases in floral density can disrupt mutualistic interactions between plants and their pollinators, and decrease reproductive success. I addressed the relationship between floral density and plant reproductive success using two experimental approaches: a pollen supplementation experiment in 12 populations of Trillium grandiflorum that naturally varied in floral density, and a transplant experiment in which floral density was manipulated in plots at four experimental sites. In the pollen supplementation experiments, the degree of pollen limitation, in terms of fruit set and seed set, decreased with floral density. Further, in the experimental sites, plant reproductive success increased asymptotically with floral density. These results demonstrate the value of simultaneously conducting experiments in both experimental sites and natural populations to understand how population density influences plant reproductive success. Factors that reduce the density of this perennial herb, such as habitat fragmentation and herbivory by white-tailed deer (Odocoileus virginianus), should be expected to limit its reproduction.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

4.
Some pollination systems, such as buzz‐pollination, are associated with floral morphologies that require a close physical interaction between floral sexual organs and insect visitors. In these systems, a pollinator's size relative to the flower may be an important feature determining whether the visitor touches both male and female sexual organs and thus transfers pollen between plants efficiently. To date, few studies have addressed whether in fact the “fit” between flower and pollinator influences pollen transfer, particularly among buzz‐pollinated species. Here we use Solanum rostratum, a buzz‐pollinated plant with dimorphic anthers and mirror‐image flowers, to investigate whether the morphological fit between the pollinator's body and floral morphology influences pollen deposition. We hypothesized that when the size of the pollinator matches the separation between the sexual organs in a flower, more pollen should be transferred to the stigma than when the visitor is either too small or too big relative to the flower. To test this hypothesis, we exposed flowers of S. rostratum with varying levels of separation between sexual organs, to bumblebees (Bombus terrestris) of different sizes. We recorded the number of visits received, pollen deposition, and fruit and seed production. We found higher pollen deposition when bees were the same size or bigger than the separation between anther and stigma within a flower. We found a similar, but not statistically significant pattern for fruit set. In contrast, seed set was more likely to occur when the size of the flower exceeded the size of the bee, suggesting that other postpollination processes may be important in translating pollen receipt to seed set. Our results suggest that the fit between flower and pollinator significantly influences pollen deposition in this buzz‐pollinated species. We speculate that in buzz‐pollinated species where floral morphology and pollinators interact closely, variation in the visitor's size may determine whether it acts mainly as a pollinator or as a pollen thief (i.e., removing pollen rewards but contributing little to pollen deposition and fertilization).  相似文献   

5.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

6.
Moeller DA 《Oecologia》2005,142(1):28-37
The structure of diverse floral visitor assemblages and the nature of spatial variation in plant–pollinator interactions have important consequences for floral evolution and reproductive interactions among pollinator-sharing plant species. In this study, I use surveys of floral visitor communities across the geographic range of Clarkia xantiana ssp. xantiana (hereafter C. x. xantiana) (Onagraceae) to examine the structure of visitor communities, the specificity of the pollination system, and the role of variation in the abiotic vs. biotic environment in contributing to spatial variation in pollinator abundance and community composition. Although the assemblage of bee visitors to C. x. xantiana is very diverse (49 species), few were regular visitors and likely to act as pollinators. Seventy-four percent of visitor species accounted for only 11% of total visitor abundance and 69% were collected in three or fewer plant populations (of ten). Of the few reliable visitors, Clarkia pollen specialist bees were the most frequent visitors, carried more Clarkia pollen compared to generalist foragers, and were less likely to harbor foreign pollen. Overall, the core group of pollinators was obscured by high numbers of incidental visitors that are unlikely to contribute to pollination. In a geographic context, the composition of specialist pollinator assemblages varied considerably along the abiotic gradient spanning the subspecies range. However, the overall abundance of specialist pollinators in plant populations was not influenced by the broad-scale abiotic gradient but strongly affected by local plant community associations. C. x. xantiana populations sympatric with pollinator-sharing congeners were visited twice as often by specialists compared to populations occurring alone. These positive indirect interactions among plant species may promote population persistence and species coexistence by enhancing individual reproductive success.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
Long‐term variation in the population density of honey bees Apis mellifera across landscapes has been shown to correlate with variation in the floral traits of plant populations in these landscapes, suggesting that variations in pollinator population density and foraging rates can drive floral trait evolution of their host plants. However, it remained to be determined whether this variation in plant traits is associated with adaptive variation in plant reproductive strategies under conditions of high and low pollinator densities. Here we conducted a reciprocal transplant experiment to examine how this variation in floral traits, under conditions of either high and low pollinator density, impacted seed production in the Tibetan lotus Saussurea nigrescens. In 2014 and 2015, we recorded the floral traits, pollinator visitation rates, and seed production of S. nigrescens populations grown in both home sites and foreign sites, where sites varied in honey bee population density. Our results demonstrated that the floral traits reflected those of their original population, regardless of their current location. However, seed production varied with both population origin and transplant site. Seed number was positively correlated with flower abundance in the pollinator‐rich sites, but with nectar production in the pollinator‐poor sites. Pollinator visitation rate was also positively correlated with flower number at pollinator‐rich sites, and with nectar volume at pollinator‐poor sites. Overall, the local genotype had higher seed production than nonlocal genotypes in home sites. However, when pollen is hand‐supplemented, plants from pollinator‐rich populations had higher seed production than plants from pollinator‐poor populations, regardless of whether they were transplanted to pollinator‐rich or ‐poor sites. These results suggest that the plant genotypic differences primarily drive variation in pollinator attraction, and this ultimately drives variation in seed: ovule ratio. Thus, our results suggest that flowering plant species use different reproductive strategies to respond to high or low pollinator densities.  相似文献   

8.
Floral colour change in Pedicularis monbeigiana (Orobanchaceae)   总被引:1,自引:0,他引:1  
We examined the effects of the retention of colour-changed flowers on long- and short-distance attractiveness of bumblebees and the likelihood of successive flower visits by bumblebees in Pedicularis monbeigiana. The lower lip changed colour with age from white to purple. Hand geitonogamous pollination significantly reduced seed production. No pollen limitation occurred in this species. Purple-phase flowers contributed minimally to pollinator attractiveness at long distance. The combination of less reproductive flowers with a lower amount of reward and floral colour change enabled plants to direct pollinators to reproductive, highly rewarding white flowers at close range. A high percentage of purple-phase flowers in an inflorescence was associated with a marked reduction in the frequency of successive flower visits to individual plants. We suggest floral colour change in P. monbeigiana may serve as a mechanism for enhancing inter-individual pollen transfer and reducing intra-individual pollen transfer.  相似文献   

9.
Strong evidence exists that fragmentation negatively affects pollination and plant reproduction, but little research has been conducted with regards to tropical trees. Specifically, effects of forest fragmentation on reproduction of plants with beetle‐pollinated flowers are poorly understood, and there are no data on the impact of fragmentation on reproduction in the structurally important tropical family Annonaceae. We examined the relationship between fragment size, pollinator abundance and seed set of beetle‐pollinated Anaxagorea dolichocarpa (Annonaceae) in a disturbed Brazilian Atlantic rainforest. Flower and fruit production and abundance of pollinators were quantified over ten months in three large (306–388 ha) and three small (6–14 ha) forest fragments. We recorded per flower pollinator abundance, resulting fruit set (fruits per flower) and seed set (monocarps per fruit) for a total of 209 individually marked flowers, and compared pollinator abundance in 186 flowers across all fragments. Flower and fruit production differed among fragments, but were similar for the combined large and small fragments. Between 64.8% (large fragments) and 66.3% (small fragments) of flowers received at least one pollinator. We found no significant difference in pollinator numbers between large and small fragments, and no correlation between pollinator abundance and fruit and seed set. A single visitor had a high probability of pollinating a flower. We conclude that 1) fragment size had no influence on pollinator number and plant reproductive success, and 2) generalist behavior of the pollinating beetles mitigate the risk of pollination failure for the reproductively specialized plant. However, further research may yet reveal genetic impoverishment of populations in small fragments due to restricted pollinator movements.  相似文献   

10.
Aguilar R  Galetto L 《Oecologia》2004,138(4):513-520
In this paper we evaluate the effects of forest fragmentation on male (pollen removal, pollen load, and pollen tubes) and female reproductive success (fruit- and seed-set) of Cestrum parqui, a self-incompatible, pollination-specialist plant species. We also measure focal individual conspecific density to account for possible density-related effects that could influence the response variables. We calculate an index which incorporates male and female fitness and gives an integrated assessment of overall reproductive success. Forest fragmentation strongly affected the amount of pollen grains on stigmas and number of pollen tubes as well as seed-set, decreasing from continuous forest to small forest fragments, whereas focal individual conspecific density failed to explain any of the variability for the studied variables. Declines in overall reproductive success (i.e. male and female) in small forest fragments are ascribed to decreases in both the quality and quantity of pollination. Self-incompatibility coupled with a specialist pollination system may be particularly important traits determining the negative fragmentation effects observed in C. parqui. Logarithmic regression models described the behaviour of the variables along the fragmentation size gradient, allowing us to detect a threshold below which the effects of fragmentation begin to negatively affect reproductive success in C. parqui. Our results emphasize the importance of evaluating both components of the total plant fitness, as well as including simultaneously several aspects of pollination and reproduction processes when assessing the effects of forest fragmentation on plant reproductive success.  相似文献   

11.
Fragmentation of natural vegetation creates one of the largest threats to plant–pollinator interactions. Although fragmentation impacts on plant populations have been explored in many, mainly herbaceous, species, the response of wild mass‐flowering species is poorly known. Here, we studied 28 heathland patches dominated by the mass‐flowering shrub Rhododendron ferrugineum, each presenting different R. ferrugineum floral display sizes (total inflorescence number per patch) and patch isolation (median distance to the three nearest patches). We assessed the impacts of these two factors on (i) heathland patch visitor assemblage (considering R. ferrugineum versus surrounding community) and (ii) R. ferrugineum flower visitation rate and pollen transfer limitation (comparing seed set from emasculated to pollen‐supplemented flowers). We found that diversity and abundance of bees visiting R. ferrugineum in heathland patches significantly decreased with decreasing R. ferrugineum floral display, while overall visitor density per patch and flower visitation rate increased. Moreover, a decrease in massive floral display and increase in patch isolation resulted in reduced visitor density in the surrounding community. Even in patches with few individuals, we found disproportionate visitor abundance in R. ferrugineum compared to the surrounding community. Finally, pollen transfer limitation in R. ferrugineum was neither affected by visitation rate nor by patch attributes. By disproportionally attracting pollinators from co‐flowering species, and probably promoting geitonogamous pollen transfer, the mass‐flowering trait appears adequate to compensate, in terms of conspecific pollen transfer, for the decrease in visitor diversity and abundance and in mate availability, which usually result from population fragmentation.  相似文献   

12.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

13.
The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant–pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

14.
Bateman’s principle states that male fitness is usually limited by the number of matings achieved, while female fitness is usually limited by the resources available for reproduction. When applied to flowering plants this principle leads to the expectation that pollen limitation of fruit and seed set will be uncommon. However, if male searching for mates (including pollen dissemination via external agents) is not sufficiently successful, then the reproductive success of both sexes (or both sex functions in hermaphroditic plants) will be limited by number of matings rather than by resources, and Bateman’s principle cannot be expected to apply. Limitation of female success due to inadequate pollen receipt appears to be a common phenomenon in plants. Using published data on 258 species in which fecundity was reported for natural pollination and hand pollination with outcross pollen, I found significant pollen limitation at some times or in some sites in 159 of the 258 species (62%). When experiments were performed multiple times within a growing season, or in multiple sites or years, the statistical significance of pollen limitation commonly varied among times, sites or years, indicating that the pollination environment is not constant. There is some indication that, across species, supplemental pollen leads to increased fruit set more often than increased seed set within fruits, pointing to the importance of gamete packaging strategies in plant reproduction. Species that are highly self-incompatible obtain a greater benefit relative to natural pollination from artificial application of excess outcross pollen than do self-compatible species. This suggests that inadequate pollen receipt is a primary cause of low fecundity rates in perennial plants, which are often self-incompatible. Because flowering plants often allocate considerable resources to pollinator attraction, both export and receipt of pollen could be limited primarily by resource investment in floral advertisement and rewards. But whatever investment is made is attraction, pollinator behavioral stochasticity usually produces wide variation among flowers in reproductive success through both male and female functions. In such circumstances the optimal deployment of resources among megaspores, microspores, and pollinator attraction may often require more flowers or more ovules per flower than will usually be fertilized, in order to benefit from chance fluctuations that bring in large number of pollen grains. Maximizing seed set for the entire plant in a stochastic pollination environment might thus entail a packaging strategy for flower number or ovule number per flower that makes pollen limitation of fruit or seed set likely. Pollen availability may limit female success in individual flowers, entire plants (in a season or over a lifetime), or populations. The appropriate level must be distinguished depending on the nature of the question being addressed.  相似文献   

15.
Although pollination networks between plants and flower visitors are diverse and flexible, seed production of many plant species is restricted by pollen limitation. Obligate outcrossers often suffer from low pollinator activity or severe interspecific competition for pollinator acquisition among co-flowering species. This study focused on seasonal changes in plant–flower visitor linkages in an alpine ecosystem and examined whether and how this seasonality affected the seed-set of Primula modesta, a self-incompatible distylous herb having long-tubed flowers. First, we recorded the linkages between plants and flower visitors along the snowmelt gradient. Then, pollination experiment was conducted to estimate the degree of pollen limitation over the course of flowering season of P. modesta. Flower visitors were classified by their tongue length based on the morphological matching with P. modesta flowers. As the season progressed, plant–visitor linkages became more diverse and generalized, and the visitation frequency to P. modesta flowers increased. In the later part of the season, however, the seed set of P. modesta was significantly reduced due to severe pollen limitation, presumably because of increased competition for long-tongued pollinators among co-flowering species. The present study revealed that pollinator availability for specialist species may be restricted even when plant–visitor linkages are diverse and generalized as a whole. In the case of P. modesta, morphological matching and competition for pollinators might be the main factors explaining this discrepancy.  相似文献   

16.
Habitat fragmentation often leads to small and isolated plant populations as well as decreased habitat quality. These processes can fundamentally disrupt the interactions between plants and pollinators and decrease reproductive success. This concerns especially self-incompatible, non-clonal species that depend on pollination for successful reproduction.In two rare and endangered heathland plant species, Genista anglica and G. pilosa, we examined pollination and reproduction in relation to population size. Eight populations of G. anglica and ten populations of G. pilosa were surveyed in the vicinity of Bremen, NW-Germany. We counted the visits of pollinators (honeybees, bumblebees, and other insects) and determined the reproductive output of the observed shoots.Contrary to our expectation to find increased pollinator visitation rates in larger populations of both Genista species, the number of flower-visiting insects was unrelated to the number of flowering shoots. Increasing shoot length had a positive and increasing temperature a negative impact on the number of visiting honeybees and bumblebees. Despite the general absence of population size effects on pollinator numbers, the number of fruits and seeds in G. anglica increased with increasing population size. Fruit and seed set in G. pilosa were negatively related to the number of ‘other insects’. Our field observations showed that larger populations of both Genista species flowered earlier than smaller populations and much earlier than reported in the literature. Flowering in large populations therefore tends to coincide less well with pollinator abundance, and this may cause a disruption of the temporal coincidence between flowering phenology and pollinator activity.  相似文献   

17.
?Premise of the study: Flowering plants that rely on pollinators for most of their reproduction may experience unpredictable and inconsistent availability of effective pollinators throughout their reproductive lifetime. We investigated the reproductive ecology of two subspecies of the tufted evening primrose, Oenothera cespitosa, which occupy geographically and edaphically distinct habitats in western North America: O. cespitosa subsp. navajoensis inhabits sandstone soils on open sites or rocky slopes in the Colorado Plateau and O. cespitosa subsp. cespitosa grows in clay soils on talus slopes and exposed rocky ridges in the western Great Plains and northern Rocky Mountains of the United States. ?Methods: Pollen augmentation and selfing experiments, floral visitor observations, and single-visit effectiveness experiments were conducted over 4 years to examine the breeding system and spatiotemporal variation in pollinator behavior, assemblage, and abundance at different populations for each subspecies. ?Key results: Both subspecies of O. cespitosa were self-incompatible and pollen-limited, suggesting that the relative abundance, effectiveness, and movement patterns of different insects as pollinators influenced the quality and quantity of seed production in these plants. Medium-sized vespertine hawkmoths (Hyles lineata, Sphinx vashti) were effective pollinators when present, as were large matinal bees (Anthophora affabilis, A. dammersi, Xylocopa tabaniformis androleuca), whereas small oligolectic Lasioglossum bees primarily functioned as pollen thieves in the evening and morning. ?Conclusions: These findings highlight the importance of variability of pollinator composition and abundance in the evolution of plant breeding systems and reproductive success at varying spatial and temporal scales.  相似文献   

18.
夏婧  郭友好 《生物多样性》2012,20(3):330-336
开花物候是物种间相互作用的重要生活史特征和适合度因子,在全球气候变化的背景下而备受关注.为探讨开花时间如何存种内和种间水平上影响植物的传粉和生殖成功,我们连续3年(2003-2005)对不同花期和伴生种存在情况下的鹤首马先蒿(Pedicularis gruina)的传粉者访花忠实度、受粉率、坐果率、单果种子产量和果实被啃食频率进行了比较研究.结果表明鹤首马先蒿的坐果率主要受其传粉环境的影响:在没有伴生种时,不同时期鹤首马先蒿的坐果率没有显著差异,34-38%的花可以坐果;在有伴生种存在时既可以显著提高其坐果率,也可显著降低其坐果率,这取决于传粉者类型以及伴生种密穗马先蒿(P.densispica)花期的差异.密穗马先蒿具有花蜜和花粉双重报酬,在群落中可以作为主体物种吸引传粉者并间接促进与其伴生的鹤首马先蒿的传粉和生殖成功.同样无蜜的管花马先蒿(P.siphonantha)和鹤首马先蒿伴生,则是通过提高群落水平对传粉者的吸引力进而直接促进鹤首马先蒿的传粉和生殖成功.此外,研究结果也表明开花时间对坐果率没有显著影响,但是显著影响单果种子产量和果实被啃食的频率.在相同的传粉条件下早花期植株单果种子产量显著高于晚花期的种子产量,同时早花期的果实被啃食的频率显著增加.  相似文献   

19.
It is widely recognized that pollinators vary in their effectiveness in pollination mutualisms, due both to differences in flower–pollinator morphological fit as well as pollinator behaviour. However, pollination webs typically treat all interactions as equal, and we contend that this method may provide misleading results. Using empirical and theoretical data, we present the case study of a self-incompatible herb in which the number of flowers visited by a pollinator cannot be used as a surrogate for the total effect of a pollinator on a plant due to differences in per-visit effectiveness at producing seeds. In self-incompatible species, the relationship between interaction frequency and per-interaction effect may become increasingly negative as more flowers per plant are visited due to geitonogamous pollen transfer. We found that pollinators making longer bouts (i.e. visiting more flowers per plant visit) had an overall higher pollination success per bout. However, per-interaction effects tended to decrease as the bout progressed, particularly for pollinators that cause higher pollen deposition. Since the same interaction frequency may result from different combinations of number of bouts (plant visits) and bout length (flowers visited/bout), pollinators making repeatedly shorter bouts may contribute more to plant reproduction for the same number of flowers visited. Consequently, the magnitude of the differences in number of interactions of different insect types may be overridden by the magnitude of the differences in effectiveness as pollinators, even if the same pollinators consistently interact more frequently. We discuss two predictions regarding the validity of using interaction frequency as a surrogate for plant seed production (as a measure of total effect), depending on the degree of self-compatibility, plant size and floral display. We suggest that the role of interaction frequency must be tested for different species, environments, and across wider scales to validate its use as a surrogate for total effect in plant–pollinator networks.  相似文献   

20.
Adler LS  Irwin RE 《Oecologia》2012,168(4):1033-1041
The evolution of floral traits may be shaped by a community of floral visitors that affect plant fitness, including pollinators and floral antagonists. The role of nectar in attracting pollinators has been extensively studied, but its effects on floral antagonists are less understood. Furthermore, the composition of non-sugar nectar components, such as secondary compounds, may affect plant reproduction via changes in both pollinator and floral antagonist behavior. We manipulated the nectar alkaloid gelsemine in wild plants of the native perennial vine Gelsemium sempervirens. We crossed nectar gelsemine manipulations with a hand-pollination treatment, allowing us to determine the effect of both the trait and the interaction on plant female reproduction. We measured pollen deposition, pollen removal, and nectar robbing to assess whether gelsemine altered the behavior of mutualists and antagonists. High nectar gelsemine reduced conspecific pollen receipt by nearly half and also reduced the proportion of conspecific pollen grains received, but had no effect on nectar robbing. Although high nectar gelsemine reduced pollen removal, an estimate of male reproduction, by one-third, this effect was not statistically significant. Fruit set was limited by pollen receipt. However, this effect varied across sites such that the sites that were most pollen-limited were also the sites where nectar alkaloids had the least effect on pollen receipt, resulting in no significant effect of nectar alkaloids on fruit set. Finally, high nectar gelsemine significantly reduced seed weight; however, this effect was mediated by a mechanism other than pollen limitation. Taken together, our work suggests that nectar alkaloids are more costly than beneficial in our system, and that relatively small-scale spatial variation in trait effects and interactions could determine the selective impacts of traits such as nectar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号