首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoperiodic responses of Xanthium strumarium L. originating between 19° N in Mexico and 34° N in Texas varied among seedlings grown from seed under controlled conditions. The critical night lengths form a gradient from 9.5 hr in northern Texas to 10.75 hr in southern Texas and northeastern Mexico. Populations with critical night lengths of 9.5 and 9.75 hr showed a longer interval to flower bud formation under cooler temperatures (24 C day/15 C night) than under warmer temperatures (30 C day/24 C night). Three of four populations with a 10.75-hr critical night length showed a shorter interval under the cooler temperature regime. Although the Texas populations demonstrate a strong correlation of photoperiodic response with latitude, the Mexico populations show diverse photoperiodic timing from approximately the same latitude. The study emphasizes that a combination of critical night length and ripeness-to-flower (maturity) response forms the basis for reproductive adaptation in different climatic regimes in Texas and Mexico.  相似文献   

2.
Reproductive adaptation to photoperiod is diverse among desert populations of Xanthium. Chihuahuan Desert populations require dark periods of 9.5–10.5 hr for reproduction, and Sonoran Desert populations require 9–10.5 hr. Many Chihuahuan populations from western Texas two weeks from sowing need only 10 cycles of 11-hr nights to produce 100% flowering, but Sonoran populations from western Mexico four weeks from sowing need 18 cycles or more. Some Sonoran plants produce buds only at a cooler temperature program, 24–15 C, but Chihuahuan plants produce them more readily under the warmer program, 30–24 C. Chihuahuan plants that were germinated under 11-hr nights and four different temperature programs were induced to flower in each condition. Differences in photoperiod and ripeness-to-flower (maturity) responses were also demonstrated under natural day lengths in central Texas. Although desert populations occurring at approximately the same latitude in either the Chihuahuan or Sonoran Desert are exposed to similar day lengths, each population may be adapted to different photoperiod cues that maximize its utilization of the local growing conditions.  相似文献   

3.
Laboratory-germinated seedlings from Connecticut, New Jersey, Illinois, Tennessee, Texas, and Florida were compared under four photoperiod temperature programs. Under each controlled condition, seedlings of northernmost provenances demonstrated least stem elongation and earliest dormancy. Greatest sensitivity to cool temperatures and short photoperiods was demonstrated by northernmost provenances. At warm temperatures, dormant bud formation was controlled by photoperiod in all populations tested except those from Texas and Florida. The reported differences among populations reflect the effects of natural selection upon different Liquidambar populations, insuring survival of the species in various habitats.  相似文献   

4.
Behavioral thermoregulation is expected to be critical in determining the capacity of reptiles to respond to climate warming and how that response will vary with latitude. We used radio-telemetry to compare behavioral thermoregulation among ratsnake (Elaphe obsoleta) populations in Texas, Illinois, and Ontario, a latitudinal distance of >1500 km. Despite numerous specific differences among populations, overall the thermal ecology was surprisingly similar during the months that snakes in all three populations were active. Preferred temperatures varied only slightly across the snakes’ range, the extent of thermoregulation was similar, and by varying when during the day and season they thermoregulated, snakes in all three populations realized body temperatures within their preferred temperature range 15–20% of the time. The ability to use fine-scale behavioral thermoregulation (i.e., selective use of habitats and microclimates) to a similar extent and achieve similar outcomes across such a wide latitudinal and climatic gradient is made possible by large-scale differences in timing of activity (ratsnakes in Texas switch to nocturnal activity during summer, whereas in Illinois and Ontario activity is exclusively diurnal and hibernation lasts 5–7 months). Modeling indicated that a 3 °C increase in ambient temperature will generally improve thermal conditions for all three populations. Our empirical analyses suggest that the snakes’ ability to respond to climate warming will be determined more by their capacity to adjust when they are active than by changes in the extent of fine-scale behavioral thermoregulation. The ability to adjust timing of activity appears to make many snakes fundamentally different from lizards. As such, the consequences of climate warming may be very different for these two groups of reptiles.  相似文献   

5.
Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site‐specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site‐specific crop cover, and county‐level herbicide (glyphosate) application. We also incorporated cross‐seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county‐level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide‐resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site‐specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine‐resolution temporal fluctuations in population‐level responses to environmental conditions when inferring the dynamics of migratory species.  相似文献   

6.
The adaptive potential and genetic background of tree species will determine their performance and vitality under changing climate conditions. How environment and genotype influence secondary growth and their climate sensitivity in boreal and temperate conifers has been fairly studied. Provenance studies assessing the genetic variation in plasticity of radial growth, however, are scarce in Mediterranean tree species. We explored the impact of climate on tree-ring growth in Pinus pinaster based on plantation sites and genetic background. We assessed the climate sensitivity, plastic response of growth, and intraspecific genetic differentiation of pines from 10 provenances planted in two trials in south-central Spain. Trees from areas with a climate similar to that of the planting sites showed greater growth rates. Higher within-site than among-site similitude in inter-annual growth variation was evidenced by similar growth patterns in each trial test, irrespective of seed provenance. We found positive growth responses to mild conditions in late winter, and to wet and cloudy conditions in spring and early summer. Greater site-dependent than genetically-driven control was observed on growth sensitivity to climate. Central Spanish seed sources were better able to withstand the combination of stressful environmental conditions in the test sites. Inter-site environmental variation was the factor that explained a higher number of growth responses to climate variation. The significant “genetic × environment” interaction on radial growth suggested that genotypic determinants were strongly modulated by plastic adaptations due to local conditions. The site-dependent relationships of provenance climate responses with the conditions at origin also reflected the prevailing local adaptation to site constraints. Since plastic response of P. pinaster trees to local environment has more influence than its genetic predisposition, assessing the spatio-temporal variation of growth sensitivity to climate becomes increasingly important.  相似文献   

7.
Forest trees dominate many Alpine landscapes that are currently exposed to changing climate. Norway spruce is one of the most important conifer species of the Italian Alps, and natural populations are found across steep environmental gradients with large differences in temperature and moisture availability. This study seeks to determine and quantify patterns of genetic diversity in natural populations toward understanding adaptive responses to changing climate. Across the Italian species range, 24 natural stands were sampled with a major focus on the Eastern Italian Alps. Sampled trees were genotyped for 384 selected single nucleotide polymorphisms (SNPs) from 285 genes. A wide array of potential candidate genes was tested for correlation with climatic parameters. To minimize false-positive association between genotype and climate, population structure was investigated. Pairwise F ST estimates between sampled populations ranged between 0.000 and 0.075, with the highest values involving the two disjoint populations, Valdieri, on the western Italian Alps, and Campolino, the most southern population on the Apennines. Despite considerable genetic admixture among populations, both Bayesian and multivariate approach identified four genetic clusters. Selection scans revealed five F ST outliers, and the environmental association analysis detected ten SNPs associated to one or more climatic variables. Overall, 13 potentially adaptive loci were identified, three of which have been reported in a previous study on the same species conducted on a broader geographical scale. In our study, precipitation, more than temperature, was often associated with genotype; therefore, it appears as the most important environmental variable associated with the high sensitivity of Norway spruce to soil water supply. These findings provide relevant information for understanding and quantifying climate change effects on this species and its ability to genetically adapt.  相似文献   

8.
Four populations of Cannabis sativa L. grown from seeds collected in Panama, Jamaica, Nepal, and east central Illinois were grown under controlled conditions in growth chambers. One set was grown under warm conditions (32° day and 23° night) and the other set was grown under lower temperatures (23° day and 16° night). CO2 exchange and transpiration were examined under various temperatures and light intensities. Observations on growth, and analyses for chlorophyll and Δ1THC (tetrahydrocannabinol) content were made. Under warm growth conditions, the central Illinois population had the highest photosynthetic rate at all temperatures investigated. The Nepal population had intermediate rates, while the Jamaica and the Panama populations had the lowest rate. The Jamaica and Panama populations had insignificant changes in photosynthetic response to changes in temperatures between 15° and 30°. Under cool growing conditions the central Illinois population had the highest rate of photosynthesis with a definite peak at 25°. Nepal plants had intermediate rates of photosynthesis, while the Panama and Jamaica populations had the lowest rate. Differences in chlorophyll and drug content were also significant between these populations. From these data it is suggested that the four populations can be grouped into different ecotypes genetically adapted to their respective environments.  相似文献   

9.
Transplanted clones of four widespread prairie grasses, Andropogon scoparius, A. gerardii, Panicum virgatum, and Sorghastrum nutans, that had survived in cultivation 1958-1962 in central Texas were studied without cultivation 1963-67 to determine survival patterns. In all four species, clones from northern and eastern sites in the United States were eliminated. Survival of A. scoparius was restricted to plants originating in central and southern Texas and in northern Mexico. Surviving clones of A. gerardii, P. virgatum, and S. nutans were chiefly of Texas origin but included other clones mostly from the south central United States. Population samples of the four species from a central Texas grassland community showed greatest survival in a multi-ramet comparison of clones originating from North Dakota to Mexico City and in a multi-clone comparison from six sites in Texas and one in New Mexico. While the superior adaptation to the local habitat by the local populations might have been expected, this study documented the survival potential of organisms in the local ecosystem.  相似文献   

10.
Subtropical forests in montane ecosystems grow under a wide range of environmental conditions. However, little is known about the growth responses of subtropical trees to climate along ecological gradients. To assess how, and to what extent climate controls tree growth, we analyzed tree responses to climate for 15 chronologies from 4 different species (Schinopsis lorentzii, Juglans australis, Cedrela lilloi, Alnus acuminata) across a variety of environments in subtropical forests from northwestern Argentina (22–28°S, 64–66°W). Using correlation and principal component analysis, site and species differences in tree-growth responses to precipitation and temperature were determined along the elevation gradient from the dry-warm Chaco lowlands to the wet-cool montane Yungas. Our results show that species responses differ according to the severity in climate conditions along the elevation gradient. At sites with unfavorable conditions, mainly located at the extremes of the environmental gradient, responses of different species to climate variations are similar; in contrast, at sites with relatively mild conditions, tree growth displays a large variety of responses reflecting differences in both local environmental conditions and species physiology. Our research suggests that individualistic responses to environmental variability would determine differences in the type and timing of the responses of dominant trees to climate, which ultimately may shift species’ assemblages in montane subtropical regions of South America under future climate changes.  相似文献   

11.
Climate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.  相似文献   

12.
To counteract the effects of herbivores and pathogens, conifers have developed a sophisticated resin-based defensive system. Since defences are costly, trees must continuously accommodate defensive investment throughout plastic responses to environmental stimuli. However, the extent of such responses can differ at the intra-specific level (i.e. genetic variation in plasticity). Here we examined whether and to what extent year-to-year climate fluctuations, an important source of environmental heterogeneity during the trees' life, drive plasticity in defensive allocation of a widespread pine species. Specifically, we quantified interannual variation in resin duct production along a 31-year-period in 174 Pinus pinaster trees of nine range-wide populations grown in two common gardens in Central Spain. We aimed to explore (i) patterns of interannual variation (i.e., temporal plasticity) in resin duct production among populations and sites, (ii) whether such patterns are linked to plastic responses to interannual variation in climate conditions (i.e., climatic plasticity), and (iii) whether plastic responses to climate differ among populations (i.e., genetic variation in plasticity) and sites. We found large interannual plasticity in resin duct production (22.8 % of total variance), with temporal patterns differing among sites and populations. Climate conditions during the early growth period significantly affected the annual differentiation of resin ducts. Particularly, April precipitation had a positive overall effect on resin duct production. Inversely, warmer conditions in April had a negative effect but only in certain populations, which demonstrates genetic variation in climate sensitivity of resin duct formation. Despite significant effects of certain climate variables on annual resin duct production, climate only accounted for a small proportion of the total interannual variation (up to 3.8 % of interannual variation explained by climate factors). This suggests that alternative factors such as trade-offs with growth and temporal variation in biotic and non-climatic abiotic conditions likely contribute to explain interannual fluctuations in defensive investment.  相似文献   

13.
Silver birch (Betula pendula Roth.) is a widespread species with a high potential for aiding sustainability and multifunctionality of European forests, as evidenced in Finland and the Baltics. However, under increasing relevance of climate change for tree growth, the meteorological sensitivity of the species is largely unknown, presuming it to be weather tolerant (low sensitivity). Considering local adaptations of populations of widespread species, climatic changes are subjecting trees to extreme conditions, thus testing their adaptability. Accordingly, information on the plasticity (variability) of responses across a gradient of meteorological conditions is crucial for reliable predictions of tree growth. Tree-ring width network was established to assess the plasticity of growth responses of silver birch to meteorological conditions across the eastern Baltic climatic gradient. Time series analysis in combination with generalized additive modelling were applied to assess responses of birch from 21 naturally regenerated conventionally managed stands scattered from southern Finland to northern Germany. Despite the presumed tolerance, explicit meteorological sensitivity of silver birch was estimated. A gradient of local linear weather-growth relationships was estimated, as growth limitation shifted from temperature during the dormancy to water availability during vegetation period in southern Finland and northern Germany, respectively. However, these relationships were nonstationary, as the effect of summer water shortage was intensifying and sensitivity to it has likely been subjected to local adaptation. The regional generalization revealed presence of stationary, yet nonlinear and plastic growth responses, implying disproportional effects of climatic changes. Such responses also explained the nonstationarities, as the local climates shifted along the regional gradient. At the regional scale, summer water shortage was the main driver of increment, while winter conditions had a secondary role; temperature of the preceding vegetation season also had an effect on increment. Accordingly, increased variability of increment of silver birch is expected under changing climate; still, sensitivity and plasticity of increment can be considered as an adaptation to shifting environments.  相似文献   

14.
Maximum growth rate and toxin content were significantly differentamong five strains of Karenia brevis isolated from Texas andFlorida when grown under identical culture conditions. Sequenceanalysis of the 18S rRNA gene and internal transcribed spacer(ITS) regions revealed, however, that all five strains wereidentical. Consequently, a clear genetic basis for physiologicalvariability among various geographical isolates of K. brevisfrom the Gulf of Mexico could not be assessed using these geneticmarkers. Both the ITS and 18S rRNA regions may be useful inspecies-specific probe selection. At the intra-specific level,however, an alternative marker will be needed to assess thediversity among K. brevis populations in the Gulf of Mexico.  相似文献   

15.
Developing strategies that reduce the impacts of climate change on biodiversity will require projections of the future status of species under alternative climate change scenarios. Demographic models based on empirical data that link temporal variation in climate with vital rates can improve the accuracy of such predictions and help guide conservation efforts. Here, we characterized how population dynamics and extinction risk might be affected by climate change for three spotted owl (Strix occidentalis) populations in the Southwestern United States over the next century. Specifically, we used stochastic, stage‐based matrix models parameterized with vital rates linked to annual variation in temperature and precipitation to project owl populations forward in time under three IPCC emissions scenarios relative to contemporary climate. Owl populations in Arizona and New Mexico were predicted to decline rapidly over the next century and had a much greater probability of extinction under all three emissions scenarios than under current climate conditions. In contrast, owl population dynamics in Southern California were relatively insensitive to predicted changes in climate, and extinction risk was low for this population under all scenarios. The difference in predicted climate change impacts between these areas was due to negative associations between warm, dry conditions and owl vital rates in Arizona and New Mexico, whereas cold, wet springs reduced reproduction in Southern California. Predicted changes in population growth rates were mediated more by weather‐induced changes in fecundity than survival, and were generally more sensitive to increases in temperature than declines in precipitation. Our results indicate that spotted owls in arid environments may be highly vulnerable to climate change, even in core parts of the owl's range. More broadly, contrasting responses to climate change among populations highlight the need to tailor conservation strategies regionally, and modeling efforts such as ours can help prioritize the allocation of resources in this regard.  相似文献   

16.
Interactions between water deficit, ABA, and provenances in Picea asperata   总被引:1,自引:0,他引:1  
The effects of exogenous abscisic acid (ABA) on the acclimation of Picea asperata to water deficit were investigated in two populations originating from wet and dry climate regions of China. Exogenous ABA was sprayed onto the leaves, and changes in plant growth and structure, gas exchange, water use efficiency (WUE), endogenous ABA content, and antioxidant enzyme levels were monitored. The results demonstrated that ABA application affected the two P. asperata populations in different ways during the water deficit. ABA application resulted in significantly lower CO(2) assimilation rates (A) under water deficit in plants from the wet climate population, whereas there were no significant changes in this parameter in the dry climate population. On the other hand, ABA application significantly decreased the dry shoot biomass, stomatal conductance (g(s)), transpiration rate (E), and malondialdehyde (MDA) content, and it significantly increased the leaf mass per area (LMA), root/shoot ratio (Rs), fine root/total root ratio (Ft), WUE, ABA content, and the superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) activities under water-deficit conditions in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet climate population. The results clearly demonstrated that sensitivity to an exogenous ABA application is population-dependent in P. asperata. Direct evidence is presented that variation in physiological mechanisms rather than different rates of ABA absorption explain the population differentiation in the sensitivity to exogenous ABA, and that the physiological basis for the amplified response to water deficit caused by exogenous ABA, present mainly in the dry climate population, is related to internal ABA accumulation. These results provide evidence for adaptive differentiation between populations of P. asperata, and they support the expected relationship between environmental heterogeneity and the magnitude of plastic responses in plant populations.  相似文献   

17.
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.  相似文献   

18.
19.
We analyzed phylogeographic patterns in the western spotted skunk, Spilogale gracilis Merriam, 1890 (Carnivora: Mephitidae) in relation to historical events associated with Pre‐Pleistocene Divergence (PPD) and Quaternary climate change (QCC) using mitochondrial DNA from 97 individuals distributed across Western North America. Divergence times were generated using BEAST to estimate when isolation in putative refugia occurred. Patterns and timing of demographic expansion was performed using Bayesian skyline plot. Putative climatic refugia resulting from Quaternary climate change were identified using paleoecological niche modeling and divergence dates compared to major vicariant events associated with Pre‐Pleistocene conditions. We recovered three major mitochondrial clades corresponding to western North America (California, Baja, and across the Great Basin), east‐central North America (Texas, central Mexico, New Mexico), and southwestern Arizona/northwestern Mexico. Time to most recent common ancestor for S. gracilis occurred ~1.36 Ma. Divergence times for each major clade occurred between 0.25 and 0.12 Ma, with signature of population expansion occurring 0.15 and 0.10 Ma. Ecological niche models identified three potential climatic refugia during the Last Interglacial, (1) west coast of California and Oregon, (2) northwestern Mexico, and (3) southern Texas/northeastern Mexico as well as two refugia during the Last Glacial Maximum, (1) western USA and (2) southern Texas/northeastern Mexico. This study supports PPD in shaping species‐level diversity compared to QCC‐driven changes at the intraspecific level for Spilogale, similar to the patterns reported for other small mammals (e.g., rodents and bats). Phylogeographic patterns also appear to have been shaped by both habitat and river vicariance, especially across the desert southwest. Further, continuing climate change during the Holocene coupled with anthropogenic modifications during the Anthropocene appears to be removing both of these barriers to current dispersal of western spotted skunks.  相似文献   

20.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号