首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural recognition molecules such as the neural cell adhesion molecule (NCAM) have been implicated in synaptic plasticity, including long-term potentiation (LTP), sensitization, and learning and memory. The major isoform of NCAM carrying the longest cytoplasmic domain of all NCAM isoforms (NCAM180) is predominantly localized in postsynaptic membranes and postsynaptic densities of hippocampal neurons, with only a proportion of synapses carrying detectable levels of NCAM180. To investigate whether this differential expression of NCAM180 may correlate with distinct states of synaptic activity, LTP was induced by high-frequency stimulation of the perforant path and the percentage of NCAM180 immunopositive spine synapses determined in the outer third of the dentate molecular layer of the dentate gyrus by immunoelectron microscopy. Twenty-four hours following induction of LTP by high-frequency stimulation, the percentage of spine synapses expressing NCAM180 increases from 37% (passive control) to 70%. This increase was inhibited by the noncompetitive N-methyl-D -aspartate receptor antagonist MK801. Following repeated LTP induction at 10 consecutive days with one tetanization each day, 60% of all spine synapses were NCAM180 immunoreactive. Compared to passive control animals, the percentage of NCAM180 expressing synapses in low-frequency stimulated animals decreased from 37% to 28%. Spine synapses in the inner part of the dentate molecular layer not contacted by the afferents of the perforant path did not change the percentage of NCAM180-expressing synapses. The results obtained by the postembedding immunogold staining technique confirmed the difference in NCAM180 expression of spine synapses between passive control and potentiated animals. These observations suggest a role for NCAM180 in synaptic remodeling accompanying LTP. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 359–372, 1998  相似文献   

2.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

3.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

4.
The neural cell adhesion molecule (NCAM) regulates synapse formation and synaptic strength via mechanisms that have remained unknown. We show that NCAM associates with the postsynaptic spectrin-based scaffold, cross-linking NCAM with the N-methyl-d-aspartate (NMDA) receptor and Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIalpha) in a manner not firmly or directly linked to PSD95 and alpha-actinin. Clustering of NCAM promotes formation of detergent-insoluble complexes enriched in postsynaptic proteins and resembling postsynaptic densities. Disruption of the NCAM-spectrin complex decreases the size of postsynaptic densities and reduces synaptic targeting of NCAM-spectrin-associated postsynaptic proteins, including spectrin, NMDA receptors, and CaMKIIalpha. Degeneration of the spectrin scaffold in NCAM-deficient neurons results in an inability to recruit CaMKIIalpha to synapses after NMDA receptor activation, which is a critical process in NMDA receptor-dependent long-term potentiation. The combined observations indicate that NCAM promotes assembly of the spectrin-based postsynaptic signaling complex, which is required for activity-associated, long-lasting changes in synaptic strength. Its abnormal function may contribute to the etiology of neuropsychiatric disorders associated with mutations in or abnormal expression of NCAM.  相似文献   

5.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

6.
Structural basis of cell-cell adhesion by NCAM   总被引:13,自引:0,他引:13  
The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory and learning. The 1.85 A crystal structure of the two N-terminal extracellular domains of NCAM reported here provides a structural basis for the homophilic interaction. The molecular packing of the two-domain structure reveals a cross shaped antiparallel dimer, and provides fundamental insight into trans-cellular recognition mediated by NCAM.  相似文献   

7.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

8.
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28 , 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.  相似文献   

9.
Binding properties of detergent-solubilized NCAM   总被引:3,自引:3,他引:0       下载免费PDF全文
An assay has been designed for the identification of NCAM-binding proteins present in an NP-40 detergent extract of brain membranes. This method, which is capable of analyzing both heterophilic and homophilic interactions, uses species-specific antibodies against NCAM in combination with radioiodination, so that after unlabeled chicken and iodinated frog brain membrane proteins were allowed to interact, the chicken NCAM could be specifically isolated by immunoaffinity adsorption. The radiolabeled frog proteins coisolated with chicken NCAM were then characterized by one- and two-dimensional gel electrophoresis in combination with immunoblotting. The only detectable NCAM-binding proteins were identified as the 140- and 180-kD forms of NCAM. The presence and absence of polysialic acid on NCAM did not change the amount or nature of the frog proteins immunopurified under these conditions. As an alternative for detecting heterophilic ligands, a simplified immunoprecipitation method was employed using either iodine or sulfate radiolabels. Again under these conditions only NCAM was detected. These results are consistent with the hypothesis that the major binding protein for NCAM is NCAM itself, and suggest that differences in polysialic acid content do not directly alter the properties of NCAM's homophilic binding site.  相似文献   

10.
The neural cell adhesion molecule NCAM and its glycosylation with polysialic acid (polySia) are crucially involved in proliferation, migration and differentiation of neural progenitors. Modification with polySia, homophilic and heterophilic interactions set the function of NCAM, but little is known on their interplay. We have shown recently that removal of polySia induces neuronal differentiation via heterophilic NCAM interactions at cell contacts between SH-SY5Y neuroblastoma cells. Here we analyze the additional impact of NCAM-positive fibroblasts as a ligand-presenting cellular environment, a model often used to demonstrate the neuritogenic effect of homophilic NCAM interactions. Native SH-SY5Y cells did not respond to interactions with fibroblast NCAM. However, after induction of neuronal differentiation by retinoic acid the previously ineffective NCAM signals activated extracellular signal-regulated kinase (ERK) and promoted neuritogenesis. Removal of polySia increased neuritogenesis in retinoic acid-treated cells additive to the NCAM substrate effect. The change in responsiveness to substrate NCAM was associated with a rearrangement of polysialylated NCAM away from its enrichment at homotypic cell-cell contacts and with the appearance of non-polysialylated NCAM, i.e. changes facilitating NCAM interactions with the substrate. Thus, heterophilic and homophilic NCAM interactions are integrated into the cell's response yet they have the capacity to independently trigger neuritogenesis. The actual occurrence of each of these interactions, however, depends on the cellular context, targeted cell surface presentation of NCAM and the dynamic regulation of its modification by polysialic acid. In summary, this study reveals how the complex interplay of NCAM interactions and polysialylation provides an elaborate system to regulate neuritogenesis.  相似文献   

11.
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM--plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.  相似文献   

12.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

13.
The neural cell adhesion molecule NCAM binds glial cell line-derived neurotrophic factor (GDNF) through specific determinants located in its third immunoglobulin (Ig) domain. However, high affinity GDNF binding and downstream signaling depend upon NCAM co-expression with the GDNF co-receptor GFRalpha1. GFRalpha1 promotes high affinity GDNF binding to NCAM and down-regulates NCAM-mediated homophilic cell adhesion, but the mechanisms underlying these effects are unknown. NCAM and GFRalpha1 interact at the plasma membrane, but the molecular determinants involved have not been characterized nor is it clear whether their interaction is required for GFRalpha1 regulation of NCAM function. We have investigated the structure-function relationships underlying GFRalpha1 binding to NCAM in intact cells. The fourth Ig domain of NCAM was both necessary and sufficient for the interaction of NCAM with GFRalpha1. Moreover, although the N-terminal domain of GFRalpha1 had previously been shown to be dispensable for GDNF binding, we found that it was both necessary and sufficient for the efficient interaction of this receptor with NCAM. GFRalpha1 lacking its N-terminal domain was still able to potentiate GDNF binding to NCAM and assemble into a tripartite receptor complex but showed a reduced capacity to attenuate NCAM-mediated cell adhesion. On its own, the GFRalpha1 N-terminal domain was sufficient to decrease NCAM-mediated cell adhesion. These results indicate that direct receptor-receptor interactions are not required for high affinity GDNF binding to NCAM but play an important role in the regulation of NCAM-mediated cell adhesion by GFRalpha1.  相似文献   

14.
Cadherins: actin with the cytoskeleton to form synapses   总被引:8,自引:0,他引:8  
Bamji SX 《Neuron》2005,47(2):175-178
Classic cadherins are calcium-dependent homophilic cell adhesion molecules that are enriched at synapses and thought to function in target recognition and adhesion at synaptic junctions. This brief review highlights evidence that cadherins and their associated catenins play a role in directing the development of pre- and postsynaptic specializations. In particular, the question of whether cadherin regulation of the actin cytoskeleton at discrete contact sites translates into the assembly of synaptic compartments will be explored.  相似文献   

15.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM–NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer’s disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.  相似文献   

16.
Structural biology of NCAM homophilic binding and activation of FGFR   总被引:10,自引:0,他引:10  
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.  相似文献   

17.
To evaluate the contributions of the pre- versus postsynaptic expression of NCAM in regulation of synaptic efficacy, we cultured dissociated hippocampal cells from NCAM-deficient and wild-type mice in homo- and heterogenotypic combinations. Double recordings from synaptically coupled neurons maintained in heterogenotypic cocultures showed that synaptic strength of excitatory but not inhibitory synapses depended on expression of NCAM post- but not presynaptically. This correlated with higher levels of potentiation and synaptic coverage of NCAM-expressing neurons compared to NCAM-deficient neurons in heterogenotypic cocultures. Synaptic density was the same in homogenotypic cultures of NCAM-deficient and wild-type neurons as well as in heterogenotypic cocultures in which glutamate receptors were blocked. These observations indicate that the relative levels of postsynaptic NCAM expression control synaptic strength in an activity-dependent manner by regulating the number of synapses.  相似文献   

18.
NCAM 180 isoform null neuromuscular junctions are unable to effectively mobilize and exocytose synaptic vesicles and thus exhibit periods of total transmission failure during high-frequency repetitive stimulation. We have identified a highly conserved C-terminal (KENESKA) domain on NCAM that is required to maintain effective transmission and demonstrate that it acts via a pathway involving MLCK and probably myosin light chain (MLC) and myosin II. By perfecting a method of introducing peptides into adult NMJs, we tested the hypothesized role of proteins in this pathway by competitive disruption of protein-protein interactions. The effects of KENESKA and other peptides on MLCK and MLC activation and on failures in both wild-type and NCAM 180 null junctions supported this pathway, and serine phosphorylation of KENESKA was critical. We propose that this pathway is required to replenish synaptic vesicles utilized during high levels of exocytosis by facilitating myosin-driven delivery of synaptic vesicles to active zones or their subsequent exocytosis.  相似文献   

19.
Characterization of soluble forms of NCAM   总被引:5,自引:0,他引:5  
Neural cell adhesion molecule (NCAM) has been described as a family of membrane glycoproteins. However, soluble NCAM immunoreactivity has long been recognized. We here show that soluble NCAM is composed of two quantitatively major polypeptides of Mr 180,000 and 115,000 and two minor components of Mr 160,000 and 145,000. Soluble NCAM was immunochemically identical to membrane NCAM, was polysialylated and carried the HNK-1 epitope. It only constituted 0.8% of total NCAM in newborn rat brain. Soluble NCAM appeared in neuronal cell culture medium 15-30 min after the start of synthesis preceding accumulation of membrane-associated NCAM on the cell surface. This indicates that soluble NCAM contains a secreted component.  相似文献   

20.
Mediation of synchronous cell-cell interactions by NCAM and PSA-NCAM is examined here in aggregates (monolayers) of C6 polysialylated embryonic neural cells, formed rapidly (within 30 s) in suspension in an ultrasound trap. These cells express all three main isoforms of neural cell adhesion molecule (NCAM). The rate of extension of perimeter contact (i.e., membrane spreading) between closely adjacent cells and the temporal reinforcement of the Filamentous (F)-actin cytoskeleton at those regions were measured. Enzymatic removal of the cell-cell repelling polysialic acid (PSA) increases the rate of NCAM-induced membrane spreading, while removal of NCAM-120 had no detectable effect. Competitive peptide inhibition of the third immunoglobulin domain of NCAM significantly reduced the rate of membrane spreading, while NCAM siRNA transfected cells lost their ability to spread. It is argued that NCAM induced contact is the initial requirement for membrane spreading and facilitates conditions for subsequent cytoskeletal reorganization in these neural cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号