首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adaptive evolutionary change is contingent on variation and selection; thus, understanding adaptive divergence and ultimately speciation requires information on both the genetic basis of adaptive traits as well as an understanding of the role of divergent natural selection on those traits. The lake whitefish (Coregonus clupeaformis) consists of several sympatric "dwarf" (limnetic) and normal (benthic) species pairs that co-inhabit northern postglacial lakes. These young species pairs have evolved independently and display parallelism in life history, behavioral, and morphological divergence associated with the use of distinct trophic resources. We identified phenotype-environment associations and determined the genetic architecture and the role of selection modulating population genetic divergence in sympatric dwarf and normal lake whitefish. The genetic architecture of 9 adaptive traits was analyzed in 2 hybrid backcrosses individually phenotyped throughout their life history. Significant quantitative trait loci (QTL) were associated with swimming behavior (habitat selection and predator avoidance), growth rate, morphology (condition factor and gill rakers), and life history (onset of maturity and fecundity). Genome scans among 4 natural sympatric pairs, using loci segregating in the map, revealed a signature of selection for 24 loci. Loci exhibiting a signature of selection were associated with QTL relative to other regions of the genome more often than expected by chance alone. Two parallel QTL outliers for growth and condition factor exhibited segregation distortion in both mapping families, supporting the hypothesis that adaptive divergence contributing to parallel reductions of gene flow among natural populations may cause genetic incompatibilities. Overall, these findings offer evidence that the genetic architecture of ecological speciation is associated with signatures of selection in nature, providing strong support for the hypothesis that divergent natural selection is currently maintaining adaptive differentiation and promoting ecological speciation in lake whitefish species pairs.  相似文献   

2.
There is ample empirical evidence that phenotypic diversification in an adaptive radiation is the outcome of divergent natural selection related to differential resource use. In contrast, the role of ecological forces in favoring and maintaining reproductive isolation in nature remains poorly understood. If the same forces driving phenotypic divergence are also responsible for speciation, one would predict a correlation between the extent of trophic specialization (reflecting variable intensity of divergent natural selection) and that of reproductive isolation being reached in a given environment. We tested this hypothesis by comparing the extent of morphological and genetic differentiation between sympatric dwarf and normal whitefish ecotypes (Coregonus sp.) from six lakes of the St. John River basin (eastern Canada and northern Maine). Eight meristic variables, 19 morphometric variables, and six microsatellite loci were used to quantify morphological and genetic differentiation, respectively. Dwarf and normal ecotypes in each lake differed primarily by traits related to trophic specialization, but the extent of differentiation varied among lakes. Significant but variable genetic divergence between ecotypes within lakes was also observed. A negative correlation was observed between the extent of gene flow between ecotypes within a lake and that of their morphological differentiation in trophic-related traits. The extent of reproductive isolation reached between dwarf and normal whitefish ecotypes appears to be driven by the potential for occupying distinct trophic niches and, thus, by the same selective forces driving tropic specialization in each lake. These results therefore support the hypothesis of ecological speciation.  相似文献   

3.
Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.  相似文献   

4.
As natural selection must act on underlying genetic variation, discovering the number and location of loci under the influence of selection is imperative towards understanding adaptive divergence in evolving populations. Studies employing genome scans have hypothesized that the action of divergent selection should reduce gene flow at the genomic locations implicated in adaptation and speciation among natural populations, yet once 'outlier' patterns of variation have been identified the function and role of such loci needs to be confirmed. We integrated adaptive QTL mapping and genomic scans among diverging sympatric pairs of the lake whitefish (Coregonus clupeaformis) species complex in order to test the hypothesis that differentiation between dwarf and normal ecotypes at growth-associated QTL was maintained by directional selection. We found evidence of significantly high levels of molecular divergence among eight growth QTL where two of the strongest candidate loci under the influence of directional selection exhibited parallel reductions of gene flow over multiple populations.  相似文献   

5.
Under the ecological theory of adaptive radiation, adaptation and reproductive isolation are thought to evolve as a result of divergent natural selection. Accordingly, elucidating the genetic basis of these processes is essential toward understanding the role of selection in shaping biological diversity. In this respect, the number of genes that evolved by selection remains contentious. To address this issue, the pattern of genetic differentiation obtained using 440 AFLP loci was compared with that expected under neutrality in four sympatric pairs of lake whitefish ecotypes that evolved adaptive phenotypic differences associated with the exploitation of distinct ecological niches. On average, 14 loci showed restricted gene flow relative to neutral expectation, suggesting a role of directional selection on their divergence. Among all loci that are most likely under directional selection, six exhibited parallel patterns of divergence, which provided further support for the role of selection in driving their divergence. Overall, these results indicate that only a small proportion of scored AFLP loci (between 1.4% and 3.2%) might be linked to genes implicated in the adaptive radiation of lake whitefish.  相似文献   

6.
The erosion of habitat heterogeneity can reduce species diversity directly but can also lead to the loss of distinctiveness of sympatric species through speciation reversal. We know little about changes in genomic differentiation during the early stages of these processes, which can be mediated by anthropogenic perturbation. Here, we analyse three sympatric whitefish species (Coregonus spp) sampled across two neighbouring and connected Swiss pre‐alpine lakes, which have been differentially affected by anthropogenic eutrophication. Our data set comprises 16,173 loci genotyped across 138 whitefish using restriction‐site associated DNA sequencing (RADseq). Our analysis suggests that in each of the two lakes, the population of a different, but ecologically similar, whitefish species declined following a recent period of eutrophication. Genomic signatures consistent with hybridization are more pronounced in the more severely impacted lake. Comparisons between sympatric pairs of whitefish species with contrasting ecology, where one is shallow benthic and the other one more profundal pelagic, reveal genomic differentiation that is largely correlated along the genome, while differentiation is uncorrelated between pairs of allopatric provenance with similar ecology. We identify four genomic loci that provide evidence of parallel divergent adaptation between the shallow benthic species and the two different more profundal species. Functional annotations available for two of those loci are consistent with divergent ecological adaptation. Our genomic analysis indicates the action of divergent natural selection between sympatric whitefish species in pre‐alpine lakes and reveals the vulnerability of these species to anthropogenic alterations of the environment and associated adaptive landscape.  相似文献   

7.
8.
The nature, size and distribution of the genomic regions underlying divergence and promoting reproductive isolation remain largely unknown. Here, we summarize ongoing efforts using young (12 000 yr BP) species pairs of lake whitefish (Coregonus clupeaformis) to expand our understanding of the initial genomic patterns of divergence observed during speciation. Our results confirmed the predictions that: (i) on average, phenotypic quantitative trait loci (pQTL) show higher F(ST) values and are more likely to be outliers (and therefore candidates for being targets of divergent selection) than non-pQTL markers; (ii) large islands of divergence rather than small independent regions under selection characterize the early stages of adaptive divergence of lake whitefish; and (iii) there is a general trend towards an increase in terms of numbers and size of genomic regions of divergence from the least (East L.) to the most differentiated species pair (Cliff L.). This is consistent with previous estimates of reproductive isolation between these species pairs being driven by the same selective forces responsible for environment specialization. Altogether, dwarf and normal whitefish species pairs represent a continuum of both morphological and genomic differentiation contributing to ecological speciation. Admittedly, much progress is still required to more finely map and circumscribe genomic islands of speciation. This will be achieved through the use of next generation sequencing data but also through a better quantification of phenotypic traits moulded by selection as organisms adapt to new environmental conditions.  相似文献   

9.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

10.
Sympatric fish populations observed in many north temperate lakes are among the best models to study the processes of population divergence and adaptive radiation. Despite considerable research on such systems, little is known about the associations between ecological conditions and the extent of ecotypic divergence. In this study, we examined the biotic and abiotic properties of postglacial lakes in which lake whitefish, Coregonus clupeaformis, occur as a derived dwarf ecotype in sympatry with an ancestral normal ecotype. We compared 19 limnological variables between two groups of lakes known from previous studies to harbour sympatric dwarf and normal ecotypes with high and low levels of phenotypic and genetic differentiation respectively. We found clear environmental differences between the two lake groups. Namely, oxygen was the most discriminant variable, where lakes harbouring the most divergent populations were characterized by the greatest hypolimnetic oxygen depletion. These lakes also had lower zooplankton densities and a narrower distribution of zooplantonic prey length. These results suggest that the highest differentiation between sympatric ecotypes occurs in lakes with reduced habitat and prey availability that could increase competition for resources. This in turns supports the hypothesis that parallelism in the extent of phenotypic divergence among sympatric whitefish ecotypes is associated with parallelism in adaptive landscape in terms of differences in limnological characteristics, as well as availability and structure of the zooplanktonic community.  相似文献   

11.
12.
Parallel evolution of a dwarf and normal whitefish has been documented in six post-glacial lakes. Here, we relate the structure and seasonal variations of the epibenthic invertebrate communities to the extent of phenotypic differentiation in these species pairs. The highest phenotypic differentiation occurs in lakes characterized by less overlap in size distribution between limnetic and epibenthic prey which could represent enhanced ecological opportunities for trophic specialization and adaptive divergence. Differences in community assemblages and seasonal variation of biotic and abiotic conditions may also play a role. Accumulating evidence indicates that strong directional selection acting on dwarf whitefish may be more important than divergent selection acting on both sympatric forms in driving whitefish phenotypic divergence and ultimately, ecological speciation. Along with Landry et al. (2007), this study supports the general hypothesis that parallelism in divergence among sympatric dwarf and normal whitefish is associated with parallelism in limnological adaptive landscape.  相似文献   

13.
14.
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome‐wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host‐adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies.  相似文献   

15.
Abstract.— Studies of phenotype-environment associations in adaptive radiation have focused largely on morphological traits related to resource-based phenotypic differences. The genetic basis of adaptive behaviors implicated in population divergence remains poorly understood, as few studies have tested the hypothesis of behavioral phenotype-environment associations. We provide evidence of a phenotype-environment association for differential adaptive swimming behaviors through experiments conducted on dwarf, normal, and hybrid lake whitefish ( Coregonus clupeaformis ). Highly significant differences were observed for depth selection, directional changes, and burst swimming, implicating a genetic basis for these behaviors. Hybrid crosses revealed that depth selection is under additive genetic control, while dominance effects were suggested for directional changes and burst swimming. Estimates for the genetic basis of behavioral differentiation from an animal model were consistent with these observations. Comparative estimates of behavioral differentiation ( Q ST) against neutral expectations ( F ST) revealed pronounced departures from neutral expectations in all three behavioral phenotypes, consistent with the hypothesis that directional selection has driven the divergence of behavior in dwarf and normal lake whitefish ecotypes.  相似文献   

16.
Understanding the genetic mechanisms that facilitate adaptive radiation is an important component of evolutionary biology. Here, we genotyped 82 neutral SNPs, seven SNPs in islands of divergence identified in a previous study (island SNPs), and a region of the major histocompatibility complex (MHC) in 32 populations of sockeye salmon to investigate whether conserved genes and genomic regions are involved in adaptive radiation. Populations representing three ecotypes were sampled from seven drainages with differing habitats and colonization histories spanning a range of 2,000 km. We found strong signatures of parallel selection across drainages at the island SNPs and MHC, suggesting that the same loci undergo divergent selection during adaptive radiation. However, patterns of differentiation at most island SNPs and the MHC were not associated with ecotypes, suggesting that these loci are responding differently to a mosaic of selective pressures. Our study provides some of the first evidence that conserved genomic islands may be involved in adaptive divergence of salmon populations. Additionally, our data provide further support for the hypothesis that sockeye salmon inhabiting rivers unconnected to lakes harbour similar genetic diversity across large distances, are likely the ancestral form of the species, and have repeatedly recolonized lake systems as they have become available after glacial recession. Finally, our results highlight the value and importance of validating outlier loci by screening additional populations and regions, a practice that will hopefully become more common in the future.  相似文献   

17.
18.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

19.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

20.
Intraspecific differentiation in response to divergent natural selection between environments is a common phenomenon in some northern freshwater fishes, especially salmonids and stickleback. Understanding why these taxa diversify and undergo adaptive radiations while most other fish species in the same environments do not, remains an open question. The possibility for intraspecific diversification has rarely been evaluated for most northern freshwater fish species. Here, we assess the potential for intraspecific differentiation between and within lake populations of roach (Rutilus rutilus)—a widespread and abundant cyprinid species—in lakes in which salmonids have evolved endemic adaptive radiations. Based on more than 3,000 polymorphic RADseq markers, we detected low but significant genetic differentiation between roach populations of two ultraoligotrophic lakes and between these and populations from other lakes. This, together with differentiation in head morphology and stable isotope signatures, suggests evolutionary and ecological differentiation among some of our studied populations. Next, we tested for intralacustrine diversification of roach within Lake Brienz, the most pristine lake surveyed in this study. We found significant phenotypic evidence for ecological intralacustrine differentiation between roach caught over a muddy substrate and those caught over a rocky substrate. However, evidence for intralacustrine genetic differentiation is at best subtle and phenotypic changes may therefore be mostly plastic. Overall, our findings suggest roach can differ between ecologically distinct lakes, but the extent of intralacustrine ecological differentiation is weak, which contrasts with the strong differentiation among endemic species of whitefish in the same lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号