首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

2.
The modifying effects of tannin components extracted from green tea and black tea on mutagen-induced SCEs and chromosome aberrations were studied. These tannin components did not affect spontaneous SCEs and chromosome aberrations in cultured Chinese hamster cells. The frequency of SCEs and chromosome aberrations induced by mitomycin C (MMC) or UV was enhanced by the posttreatment with tea tannin components. When cells were post-treated with tea tannin components in the presence of metabolic enzymes of rat liver (S9 mix), the modifying effects on the induction of SCEs and chromosome aberrations by mutagens were complicated. MMC- and UV-induced SCEs and chromosome aberrations were suppressed by the posttreatment with tea tannin components at low concentrations (less than or equal to 6.7 micrograms/ml) with S9 mix. At a high concentration of tea tannin components (20 micrograms/ml) with S9 mix, a co-mutagenic effect was observed. The modifying effects of tea tannin components were shown to occur in the G1 phase of the cell cycle. In cells from a patient with xeroderma pigmentosum (XP) and a normal human embryo, MMC-induced SCEs were suppressed by the posttreatment with tea tannin components in the presence of S9 mix, and enhanced in the absence of S9 mix. On the other hand, tea tannin components modified SCE frequencies in UV-irradiated normal human cells but not in UV-irradiated XP cells. Our results suggested that tea tannin components themselves inhibited DNA-excision repair and resulted in a co-mutagenic effect, while in the presence of S9 mix metabolites of tea tannin components promoted DNA-excision repair activity and resulted in an antimutagenic effect. MMC-induced chromosome aberrations in mouse bone marrow cells were suppressed by the pretreatment with green tea and black tea tannin mixture.  相似文献   

3.
The influence of 21 kinds of components of plant essence on sister-chromatid exchanges (SCEs) induced by mitomycin C was investigated in cultured Chinese hamster CHO K-1 cells. Posttreatment with scopoletin, jasmone, caffeic acid and ferulic acid significantly increased the frequency of SCEs. Further investigation of the SCE-enhancing effect of analogues of caffeic acid and ferulic acid revealed that an alpha,beta-unsaturated carbonyl group may be necessary for SCE-enhancing effects. The influence of caffeic acid and ferulic acid on X-ray- or UV-induced SCEs was also studied. The frequencies of SCEs induced by UV were increased by treatment with these compounds. This increasing effect was observed in the S phase of the cell cycle. On the contrary, X-ray-induced SCEs were reduced by the treatment with these compounds. The decreasing effect was observed in the G1 phase but not in the S or G2 phase. To explain these contradictory results, we assumed that caffeic acid and ferulic acid may modify the repair of DNA strand breaks.  相似文献   

4.
The roles of DNA crosslink and its repair in the induction of sister-chromatid exchanges (SCEs) were studied in normal, xeroderma pigmentosum (XP) complementation group A, and Fanconi's anemia (FA) fibroblasts after treatment with mitomycin C (MC) or decarbamoyl mitomycin C (DMC) for 1 h. FA strains were 5—30-fold more sensitive to MC killing than normal cells, but normally responded to DMC killing. XP group-A cells were twice and only slightly more sensitive to DMC and MC killings, respectively, than normal cells. The induction rate of immediate SCEs by MC was 1.7 times higher, despite a normal SCE rate by DMC, in FA strains than that in normal cells. Alternatively, SCE rates by DMC and MC were 6 times and only 1.3 times higher, respectively, in XP cells than in normal cells. In normal cells, the reduction of MC-induced SCEs as a function of repair time followed a biphasic curve of the first rapid (half-life, 2 h) and the second slow (half-life, 14 h) components. Such components corresponded exactly to the first half-excision and the second slow repair processes of molecular crosslink repair. In MC-induced SCEs, FA17JTO cells exhibited only the slow reduction component without the first rapid component and a higher saturation level in the time-dependent reduction in SCEs. This indicates that SCEs are produced by crosslinks remaining unrepaired for long times (24—48 h) after treatment of FA cells. Conversely, XP group-A cells capable of the first half-excision manifested the first rapid reduction in SCEs, although the second component declined at the slowest rate (half-life, 48 h) owing to a defect in the second mono-adduct repair. The reduction in DMC-induced SCEs followed only the slow component. Thus, these results demonstrate that crosslink can be the lesion leading to SCE, and the MC-induced SCE frequency is higher in FA cells than in normal cells. In the FA20JTO strain, such a repair defect seemed to be less than in FA17JTO cells, judged from the survival and SCE characteristics.  相似文献   

5.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

6.
Lymphocytes from two sisters with Fanconi's anemia (FA) were studied for cell cycle kinetics, sister chromatid exchanges (SCEs), and chromosomal aberrations when they had undergone one, two, or three or more divisions in mitomycin C (MMC)-treated cultures. Lymphocytes from the parents, another sister of the probands, and a healthy unrelated adult were examined as controls. Analyses of cell cycle kinetics by the sister chromatid differential staining method revealed that the relative frequency of metaphase cells at their third or subsequent divisions was much smaller in untreated FA cultures than in normal cultures fixed at 96 h after phytohemagglutinin stimulation. These data indicate that FA cells proliferate much more slowly than normal cells. MMC treatments of FA and normal cells led to a clearly dose-related delay in cell turnover times, the duration of delay being much longer in FA than in normal cells. FA cells had about 1.4 times higher frequencies of SCEs than normal cells in both MMC-treated and untreated cultures. FA cells also showed several times higher frequencies of chromosomal aberrations than normal cells, and the frequency of chromosomal aberrations decreased through subsequent mitoses by approximately 60% in both FA and normal cells.  相似文献   

7.
Liquid-holding conditions can be obtained for human diploid skin fibroblasts by keeping confluent cultures stationary over periods of 7 days or longer by means of conditioned medium. Under this condition recovery of radiation damage induced by ultraviolet light or X-rays is observed as an increase in cloning efficiency. The amount of recovery when expressed in a dose-modifying-factor appears higher than in bacteria and yeast. The repair-deficient human cell strains XP25Ro and XP7Be (xeroderma pigmentosum from complementation groups A and D respectively) exhibit less but still discernible recovery after UV-irradiation and the same was observed for AT5Bi (ataxia telangiectasia) after X-irradiation. Experiments on mutation induction indicated that the repair which takes place during liquid holding of UV-irradiated XP7Be cells reduces the mutant frequency considerably while after liquid holding of UV-irradiated wild-type cells the same or lower mutant frequencies were found for the lower exposures and the same or higher mutant frequencies for the higher exposures.  相似文献   

8.
The relationships between the cytotoxic effect of ultraviolet light and the UV-induced sister-chromatid exchanges (SCEs) were compared among fibroblast cell strains from two unrelated Bloom's syndrome (BS) patients, one xeroderma pigmentosum (XP) patient belonging to complementation group A and two unrelated normal controls. The "net" induced SCEs as a function of UV fluence, obtained by subtracting spontaneous SCEs from observed SCEs, were much higher in both BS cells and XP group A cells than in normal cells. The relative efficiency of induced SCE, defined as the "net" induced SCEs as a function of surviving fraction after UV irradiation, was higher in BS cells than in normal and XP cells, and there was essentially no difference between XP and normal cells. These results imply that in addition to the extremely high frequency of spontaneous SCEs, the increased efficiency in UV induction of SCEs may reflect the intrinsic defect(s) in BS cells.  相似文献   

9.
C Nowak  G Obe 《Mutation research》1985,149(3):469-474
Human peripheral lymphocytes and Chinese hamster ovary cells were treated in the G1 phase of the cell cycle with the trifunctional alkylating agent trenimon (TRN) and post-treated with a single-strand specific endonuclease from Neurospora crassa (NE). TRN induces chromosomal aberrations of the chromatid type (CA) and sister-chromatid exchanges (SCE). NE post-treatment leads to an elevation of the frequencies of CA but not of SCEs. This indicates that TRN induced CA are the result of DNA double-strand breaks and that the SCEs originate from other types of lesions, most probably base damage.  相似文献   

10.
3-Aminobenzamide and benzamide, two potent inhibitors of poly-(ADP-ribose)-polymerase increase the frequencies of SCEs in Chinese hamster ovary cells in a dose-dependent manner. SCEs were studied in cells in which the inhibitors were present either during the first cell cycle or the second cell cycle or both. Most of the induced SCEs were found to be formed during the second cell cycle in which BU-containing DNA was used as template for DNA synthesis. In cells which were pregrown for 4 cell cycles in the presence of BrdUrd, in order to obtain both sister chromatids bifiliarly substituted with BU in their DNA, it was found that the presence of inhibitor even in the first cell cycle increased the frequencies of SCEs. It is concluded that the incorporated BrdUrd plays an important role in the origin of spontaneous and induced SCEs. 3-Aminobenzamide alone or benzamide in the presence of BrdUrd during culture, did not increase the frequencies of mutations to HGPRT? in these cells.  相似文献   

11.
It is known that cells from one class of xeroderma pigmentosum (XP) patients, called XP variants, carry out excision repair of UV-induced DNA damage at a normal rate and are only slightly more sensitive than normal cells to the cytotoxic effect of UV radiation, but are much more sensitive to the mutagenic effect of UV. To see if this hypermutability were the result of an 'error-prone', excision repair process, we irradiated fibroblasts derived from an XP variant patient, XP4BE, under conditions that allowed the cells various lengths of time for excision repair before the onset of DNA synthesis (S phase) and assayed the frequency of 6-thioguanine (TG)-resistant mutants. Cells synchronized by release from confluence (G0 state) and irradiated just prior to S phase showed a dose-dependent increase in mutants at very high frequencies; cells irradiated in early G1, approximately 12 h before the onset of S phase, showed frequencies 4 times lower. Cells irradiated in the G0 state and allowed 24 h or 48 h for excision repair before the onset of S phase showed still lower frequencies. A comparison of the relative rates of decrease in mutant frequency with time for excision repair before the onset of S phase in XP variant cells and normal human fibroblasts after a dose of 4 or 6 J/m2 showed that these were equal. However, for every time point, the frequency of mutants induced per dose of UV was significantly higher in the XP variant population than in the normal, suggesting that the XP variant cells have an abnormally error-prone process of replicating DNA on a template containing unexcised lesions or normal cells are by-passing many of such lesions using an error-free process. A similar comparative study in synchronized populations of XP4BE cells and normal cells, using the anti 7,8-diol-9,10-epoxide of benzo[a]pyrene, showed that excision repair prior to the onset of S phase also decreased the frequency of mutants induced in XP variant cells by this agent. But for every dose and time point, the frequencies induced in XP4BE cells and normal cells were identical. Thus, the hypermutability of the XP4BE cells was specific to UV radiation-induced DNA lesions.  相似文献   

12.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

13.
The frequency of sister chromatid exchanges (SCEs), both spontaneous and induced by UV-light, X-rays, mitomycin C and ethylmetansulphonate (EMS), has been investigated in cultured human peripheral blood lymphocytes. Besides, frequency of spontaneous and induced SCEs was studied under the action of the inhibitors of topoisomerase II, polymerase poly(ADP-ribose), and DNA repair, i. e. novobiocin, 3-metoxybenzamide, and caffeine, respectively. It is shown that the base-line SCEs in lymphocytes of the patient with xeroderma pigmentosum II (XP2LE) is dramatically higher compared to that in normal and pigmented xerodermoid cells (XP3LE). The above inhibitors of DNA synthesis and repair enhance the rate of spontaneous SCEs in normal, XP2LE and XP3LE cells. UV-, X-ray and chemical mutagens induced an increased frequency of SCEs in these cells. Simultaneous treatment with mutagenes and inhibitors of DNA synthesis and DNA repair enhanced the rate of SCEs in lymphocytes of healthy donors and in the XP3LE patient. The frequency of the XP2LE cells. Novobiocin, 3-MBA and caffeine significantly decreased the frequency of SCEs in mitomycin C- and EMS-treated XP2LE lymphocyte, which nevertheless was much higher than that in normal cells treated with the same agents.  相似文献   

14.
The survival of excision-deficient and of excision-proficient (variant) skin fibroblasts from xeroderma pigmentosum (XP) donors was about 5 times and twice, respectively, more sensitive to formaldehyde (FA) treatment than that of skin fibroblasts from healthy and XP heterozygote donors. The capacity of FA-treated host cells to further support Herpes virus (HSV) replication was also more sensitive to FA in XP12BE (group A) than in normal (KD) cells. An important recovery of this capacity occurred in both cell types when they were infected at increasing times (up to 36 h) after FA treatment. This contrasts with the decreasing capacity observed in XP12BE when similarly infected at increasing times after exposure to ultraviolet. In addition, the survival of FA-treated HSV was comparable in KD and XP12BE cells, whereas that of UV-irradiated HSV was much lower in XP12BE than in KD cells.  相似文献   

15.
Summary Twin and single sister chromatid exchanges (SCEs) induced by short treatments with mitomycin C (MC) and 4,5,8-trimethylpsoralen (TMP)-plus-near ultraviolet light (NUV) were analyzed in colcemid-induced endoreduplicated normal human and typical Fanconi's anemia (FA) fibroblasts with diplochromosomes. The induction rate of twin SCEs that had occurred in the first cycle (S1) after the treatment was 1.7–2.4 times higher in FA cells than in normal cells. The induction rate of single SCEs that had arisen during the second cycle (S2) long after the treatment was also much higher, though less than the twin SCE rate, in FA cells than the almost neglible rate after repair of cross-links and monoadducts in normal cells. These results in FA cells, which specifically lack the first half-excision step of the two-step cross-link repair but retain the normal monoadduct repair, indicate that MC or TMP cross-links remaining unrepaired are indeed responsible for higher inductions of twin (S1 exchange) and single SCEs (S2 exchange). Thus, these findings indicate that Shafer's model of replication bypass for cross-link-induced SCE, which predicts greatly reduced twin SCE formation in FA cells due to half cancellation, is apparently inadequate as such. We present three plausible models, incorporating the ordinary replication model, random unilateral cross-link transfer, and chromatid breakage/reunion, that can account for the probabilistic inductions of single and twin SCEs and even for no SCE formation.This work was supported in part by a grant-in-aid for cancer research from the Ministry of Education, Science and Culture, Japan  相似文献   

16.
17.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

18.
Four naturally occurring compounds, indole-3-carbinol (I3C), apigenin (Api), ellagic acid (EA) and tannic acid (TA), were tested for their inhibitory effects against 1-nitropyrene- (1-NP) or 1,6-dinitropyrene (1,6-DNP)-induced genotoxicity in Salmonella tester strains and Chinese hamster ovary (CHO) cells. Api and TA strongly inhibited the bacterial mutagenesis induced by nitropyrenes, while 13C and EA had little or no effect. For example, in TA98, 0.2 μmole Api resulted in 48% and 56% inhibition of the mutagenicity induced by 4 nmole 1-NP and 0.035 nmole 1,6-DNP, respectively. With an equal dose, expected, a good correlation was observed between the antimutagenicity of nitropyrenes and their inhibitory effect on nitroreductase activity. This indicated that one of the possible antimutagenic mechanisms of Api or TA was to inactivate the metabolism of nitropyrenes. Two biological end-points, cytotoxicity and sister-chromatid exchange (SCEs), were used to screen the antigenotoxic effects of these compounds in CHO cells. At the sub-cytotoxic dose, 13C, Api and TA all protected against the cytotoxicity induced by 1-NP and 1,6-DNP, but only TA and Api gave a significant reduction of the frequency of SCEs. Moreover, this reduction was found to be highly dose-dependent.  相似文献   

19.
Although DNA-damaging agents such as ultraviolet (UV) and X-ray can induce apoptosis, the difference in the apoptotic mechanism is not clearly understood. In the present study, we investigated the effects of these two genotoxic agents on the induction of DNA damage and subsequent apoptotic cell death from the viewpoint of cell cycle regulation by using WiDr cells. Transient G1 arrest was observed after UV exposure, whereas G2 but not G1 arrest was induced after X-ray irradiation. UV-exposure could induce G1 arrest in both mutant-type (mt-p53) and wild-type p53 (wt-p53) cells, but obvious G1 arrest was not observed in the cells lacking in p53 expression. An increase in the DNA fragmentation was observed at S phase in UV-irradiated cells and at G2 phase in X-irradiated cells, respectively. UV-irradiated cells showed an increase production of p53 protein and accumulation of p21 protein. On the contrary, both p53 and p21 proteins remained at a low level in X-irradiated cells. Treatment with aphidicolin, an S phase blocking agent, prolonged cell cycle arrest and reduced the rate of apoptotic cell death in both UV-irradiated and X-irradiated cells. From these results, it is suggested that UV-induced apoptosis occurs mainly at S phase and is regulated by increased production of p53 and p21 proteins, while X-ray-induced apoptosis occurs after G2 blockade and may be independent of p53.  相似文献   

20.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) by short-wave ultraviolet (UV) and X-irradiation was studied in Chinese hamster ovary (CHO) wild-type (WT) cells and one of its UV-hypersensitive mutants, 43-3B. The results indicate that CHO 43-3B show high levels of spontaneously occurring chromosomal aberrations and SCEs; these levels are, respectively, approximately 4 and 1.7 times those found in WT CHO. Treatment with UV produced a considerable delay in the cell-cycle progression of the mutant cells compared to the WT cells. Doses of UV that had no effect on WT cells, significantly induced chromosomal alterations in the mutant in a dose-dependent manner. An approximately 5-fold increase in the induced frequencies of SCEs was obtained in 43-3B cells after UV treatment. No synergistic effect was observed with UV irradiation and the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide (3AB), in either cell type. The frequency of SCEs in the mutant cell lines was lower than would be expected if the effects of UV and the inhibitor were additive. X-Ray alone in G1 and in combination with 3AB in G2 did not induce increased frequencies of chromosomal aberrations in mutant cells in comparison to the WT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号