首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

2.
Using gel filtration through Sephadex G-100 and bioaffinity chromatography on contrical-Sepharose, cathepsin G and elastase were isolated from pig peripheral blood neutrophil granules and purified to homogeneity. Both enzymes hydrolyzed the total histone from calf thymus as well as synthetic substrates--tert-butoxy-L-alanine p-nitrophenyl ester (elastase) and benzoyltyrosine ethyl ester (cathepsin G). The use of natural and synthetic protease inhibitors showed that both enzymes were related to the group of serine proteases. The molecular mass of the cathepsin G subunit as determined by SDS polyacrylamide gel electrophoresis is 28-29 kD, that of elastase--30-31 kD. The pH optima for the hydrolysis of proteinaceous and synthetic substrates for cathepsin G and elastase are 8.0-8.5 and 7.0-7.5, respectively. The isoelectric points for elastase and cathepsin G are 9.7-10.0 and greater than 10, respectively; the temperature optima--30-40 degrees C and 50-60 degrees C, respectively. The amino acid composition of the two enzymes from pig granulocytes revealed a high content of arginine and was similar to that of human granulocytes.  相似文献   

3.
We used antibodies to human leukocyte ("neutrophil") elastase and cathepsin G to localize the corresponding antigens in human neutrophils, monocytes, and alveolar macrophages by immunohistochemistry. Furthermore, we combined immunogold localization with enzyme histochemistry to localize proteinase antigens and endogenous peroxidase activity in the same sections. As expected, all neutrophils contained both elastase and cathepsin G, and the proteinases localized to granules with peroxidase activity. In contrast, marked heterogeneity in monocyte staining for elastase, cathepsin G, and endogenous peroxidase was found. Sixty percent or more were unstained, while the remainder varied greatly in staining intensity. The elastase and cathepsin G in monocytes were localized by immunoelectron microscopy, combined with histochemistry, to cytoplasmic granules which had peroxidase activity. Alveolar macrophages were unstained. Therefore, a subpopulation of peripheral blood monocytes contains leukocyte elastase and cathepsin G in a cell compartment from which these enzymes may potentially be released into the extracellular space. The occurrence of peroxidase and neutral proteinases in the same granules in monocytes could permit the H2O2-myeloperoxidase-halide system and the neutral proteinases to act in concert in such functions as microbe killing and extracellular proteolysis.  相似文献   

4.
Two metallo-proteinases of human neutrophil leucocytes, collagenase and gelatinase, were studied. Collagenase specifically cleaved native collagen into the TCA and TCB fragments, whereas gelatinase degraded denatured collagen, i.e. gelatin, and the TCA fragments produced by collagenase. On subcellular fractionation by zonal sedimentation, collagenase was found to be localized in the specific granules, separate from gelatinase, which was recovered in smaller subcellular organelles known as C-particles. Neither enzyme was present in the azurophil granules, which contain the two major serine proteinases of neutrophils, elastase and cathepsin G. Collagenase and gelatinase were separated by gel filtration from extracts of partially purified granules. Both enzymes were found to occur in latent forms and were activated either by trypsin or by 4-aminophenylmercuric acetate. Gelatinase was also activated by cathepsin G, which, however, destroyed collagenase. Both enzymes were destroyed by neutrophil elastase. Activation resulted in a decrease by 25 000 in the apparent mol. wt. of both latent metallo-proteinases.  相似文献   

5.
The contribution of leukocyte proteases to fibrinolysis   总被引:3,自引:0,他引:3  
E F Plow 《Blut》1986,53(1):1-9
Polymorphonuclear leukocytes accumulate within blood clots and may contribute to fibrinolysis. The primary fibrinolytic enzymes of neutrophils are cathepsin G and elastase. Fibrin can be exposed to these granular enzymes as a result of cell lysis, phagocytosis of fibrin, or secretion of the enzymes from the cells. Neutrophil secretion occurs in association with blood coagulation and is dependent upon a plasma factor(s) and calcium. After secretion, the enzymes can degrade fibrin within a plasma environment. This is demonstrated by the inhibition of fibrinolysis by specific inhibitors of elastase and the augmentation of fibrinolysis by neutralization of the primary plasma inhibitor of elastase, alpha 1-proteinase inhibitor. A radioimmunoassay which discriminates elastase from plasmic degradation products of fibrinogen has been developed. In this assay, elastase elicited degradation products of fibrin(ogen) were detected in certain pathophysiologic plasma samples. Taken together, these findings indicate a role for leukocyte proteases in physiological fibrinolysis.  相似文献   

6.
Human leukocyte elastase and cathepsin G were isolated from purulent sputum by a simple procedure involving chromatography on elastin-agarose. Salt extracts of sputum were prepared, treated with DNase, and the precipitate which formed extracted and applied to a column of soluble elastin-Sepharose 4B. Contaminating protein was eluted with 50 mM Tris, 50 mM NaCl, pH 8.0 and then two column volumes of 50 mM acetate, 1.0 M NaCl, pH 5.0. The tightly bound elastase and cathepsin G together with a trypsin-like serine protease could finally be eluted with 50 mM acetate, 1.0 M NaCl, 20% DMSO, pH 5.0. Resolution of the proteases was accomplished by cation-exchange chromatography. Disc gel electrophoresis established the purity of elastase and cathepsin G and confirmed the existence of several isozymes for each.  相似文献   

7.
Proteinase activity in the cellular slime mould Dictyostelium discoideum has been analyzed by electrophoresis on polyacrylamide gels containing denatured hemoglobin. At least eight bands due to acid proteinases have been defined using extracts of myxamoebae, four bands A-D which move faster than the fifth and major band E, a minor band E' which moves just behind E and two slow bands G and H. Fruiting body formation was accompanied by the appearance of one new proteinase band F. The proteinases were present in extracts of both axenically-grown and bacterially-grown cells. Differences between the pH dependence and stability of the individual proteinases were detected. Inhibitor studies suggested that the faster proteinases A-D may be cathepsin B-like, whilst the slower enzymes E, E' and F do not fit readily into any known group of proteinases since they were sensitive to HgCl2 but not to other inhibitors of cathepsin B and not to inhibitors of cathepsin D-like proteinases under standard conditions. None of the proteinases was apparently formed during or after preparation of extracts and the proteinases could be re-run on polyacrylamide gels to give only the band expected from the first run. The bands are believed to reflect multiple proteinase activities within the cell.  相似文献   

8.
Human mast cells can be divided into two subsets based on serine proteinase composition: a subset that contains the serine proteinases tryptase and chymase (MCTC), and a subset that contains only tryptase (MCT). In this study we examined both types of mast cells for two additional proteinases, cathepsin G and elastase, which are the major serine proteinases of neutrophils. Because human mast cell chymase and cathepsin G are both chymotrypsin-like proteinases, the properties of these enzymes were further defined to confirm their distinctiveness. Comparison of their N-terminal sequences showed 30% nonidentity over the first 35 amino acids, and comparison of their amino acid compositions demonstrated a marked difference in their Arg/Lys ratios, which was approximately 1 for chymase and 10 for cathepsin G. Endoglycosidase F treatment increased the electrophoretic mobility of chymase on SDS gels, indicating significant N-linked carbohydrate on chymase; no effect was observed on cathepsin G. Immunoprecipitation and immunoblotting with specific antisera to each proteinase revealed little, if any, detectable cross-reactivity. Immunocytochemical studies showed selective labelling of MCTC type mast cells by cathepsin G antiserum in sections of human skin, lung, and bowel. No labeling of mast cells by elastase antiserum was detected in the same tissues, or in dispersed mast cells from lung and skin. A protein cross-reactive with cathepsin G was identified in extracts of human skin mast cells by immunoblot analysis. This protein had a slightly higher Mr (30,000) than the predominant form of neutrophil cathepsin G (Mr 28,000), and could not be separated from chymase (Mr 30,000) by SDS gel electrophoresis because of the size similarity. Using casein, a protein substrate hydrolyzed at comparable rates by chymase and cathepsin G, it was shown that about 30% of the caseinolytic activity in mast cell extracts was sensitive to inhibitors of cathepsin G that had no effect on chymase. Hydrolytic activity characteristic of elastase was not detected in these extracts. These studies indicate that human MCTC mast cells may contain two different chymotrypsin-like proteinases: chymase and a proteinase more closely related to cathepsin G, both of which are undetectable in MCT mast cells. Neutrophil elastase, on the other hand, was not detected in human mast cells by our procedures.  相似文献   

9.
1. Adult female tsetse flies (Glossina morsitans centralis) have at least five midgut fibrinolytic proteases, the two most active of which we have purified using DE-52 cellulose. 2. The purified proteases appeared as single bands in sodium dodecylsulphate polyacrylamide gels and had mol. wts of 24,000 and 23,500 and pI values of 6.0 and 5.3, respectively. 3. Both proteases hydrolyse Tosyl-Gly-Pro-Arg-pNA optimally at pH 8.0 (with Km of 20 and 30 microM) and were inhibited by diisopropylfluorophosphate, alpha 1-protease inhibitor, aprotinin, soybean trypsin inhibitor, benzamidine and tosyllysine chloromethylketone. 4. Compared to bovine plasmin, these enzymes digest fibrinogen or fibrin at a slower rate but give similar products. 5. Thus these enzymes are serine proteases similar to the trypsin-like enzymes detected in G. m. morsitans.  相似文献   

10.
The degradation of human lung elastin by neutrophil proteinases   总被引:13,自引:0,他引:13  
Human lung elastin has been isolated by both a degradative and nondegradative procedure and the products obtained found to have amino acid compositions comparable to published results. These elastin preparations, when utilized as substrates for various mammalian proteinases, were solubilized by porcine elastase at a rate six times faster than human leukocyte elastase. Leukocyte cathepsin G also solubilized lung elastin but only at 12% of the rate of the leukocyte elastase. In all cases the elastin prepared by nondegradative techniques proved to be the best substrate in these studies. The differences in the rate of digestion of elastin of the two elastolytic proteinases was readily attributed to the specificity differences of each enzyme as judged by carboxyterminal analysis of solubilized elastin peptides. The plasma proteinase inhibitors, alpha-1-proteinase inhibitor and alpha-2-macroglobulin abolished the elastolytic activity of both leukocyte enzymes, while alpha-1-antichymotrypsin specifically inactivated cathespsin G. Two synthetic inhibitors, Me-O-Suc-Ala-Ala-Pro-Val-CH2Cl (for elastase and Z-Gly-Leu-Phe-CH2Cl (for cathepsin G) were equally effective in abolishing the elastolytic activity of the two neutrophil enzymes. However, inhibition of leukocyte elastase by alpha-1-proteinase inhibitor was significantly suppressed if the enzyme was preincubated with elastin prior to addition of the inhibitor.  相似文献   

11.
A simple and rapid procedure is described for the separation of the human leucocyte enzymes alanine aminopeptidase, cathepsin G, collagenase, elastase and myeloperoxidase. The enzymes are prepared from leucocytes, obtained from buffy coat, by repeated extraction with buffer A(1 M salt concentration). The pooled extracts are successively subjected to batch adsorption on concanavalin A-Sepharose, gel filtration on Sephacryl S-300, affinity chromatography on collagen-Sepharose 4-B, batch adsorption on CM-Sephadex C-50 and adsorption chromatography on hydroxyapatite. The yields of the isolated enzymes of a typical preparation are 47% alanine aminopeptidase, 9% cathepsin G, 90% latent and active collagenase, 23% elastase and approximately 100% myeloperoxidase with respect to the pooled extracts. The cathepsin G, collagenase and elastase preparations are essentially free from other proteolytic enzymes and may be used without further purifications.  相似文献   

12.
The interaction of a series of derivatives of cis-N-hydroxy-3-phenyl-2-isoxazoline-4,5-dicarboximide toward human leukocyte elastase and cathepsin G was investigated. Both enzymes were rapidly acylated and the corresponding acyl enzymes exhibited variable stability.  相似文献   

13.
The spent medium of cultured inflamed synovial tissue contains a potent inhibitor of leukocyte elastase. This leukocyte elastase inhibitor has no effect on leukocyte cathepsin G and pancreatic elastase is only marginally affected. The inhibitor is a glycoprotein, stable to heat, acid and reductive alkylation. Pretreatment of the inhibitor with either trypsin or chymotrypsin results in its inactivation.  相似文献   

14.
The subcellular distribution of the elastase in human myeloid leukemia HL-60 cells was studied in comparison with that in normal leukocytes. On differential centrifugation, most of the elastase activity of HL-60 cell lysates was recovered in the 105,000 x g supernatant, while that of human peripheral blood leukocyte lysates was recovered in the 500 x g precipitate (azurophil granule-rich fraction). Moreover, on Percoll density gradient centrifugation, the elastase activity in HL-60 cell extracts was recovered in the lightest fraction with none in the azurophil granule-rich fractions, whereas most of the activity in leukocyte extracts was recovered in the azurophil granule-rich fractions. This subcellular localization of elastase did not change when HL-60 cells differentiated into monocytes and granulocytes by induction with 12-O-tetradecanoyl phorbol-13-acetate and retinoic acid, respectively. Furthermore, on Sephadex G-75 gel filtration, the elastase activity in HL-60 cell extracts was eluted earlier than that in leukocyte extracts. The size estimation indicated that the elastase of HL-60 cells was 36-30 kDa, corresponding to the size of an elastase precursor reported. The relevance of a large form of the elastase in HL-60 cells to its subcellular localization is discussed.  相似文献   

15.
Incubation of human serum alpha 1-antichymotrypsin with human pancreatic elastase 2 or porcine pancreatic elastase results in the complete inhibition of each enzyme as determined by spectrophotometric assays. alpha 1-Antichymotrypsin reacts much more rapidly with the human than with the porcine enzyme. The inhibitor: enzyme molar ratio, required to obtain full inhibition of enzymatic activity, is equal to 1.25/1 when alpha 1-antichymotrypsin reacts with human pancreatic elastase 2 while it is markedly higher with porcine pancreatic elastase (5.5/1). Patterns obtained by SDS/polyacrylamide gel electrophoresis of the reaction products show the formation with both enzymes of an equimolar complex (Mr near 77 000) and the release of a fragment migrating as a peptide of Mr near 5000. Moreover a free proteolytically modified form of alpha 1-antichymotrypsin, electrophoretically identical with that obtained in the reaction with cathepsin G or bovine chymotrypsin, is produced in the reaction with each elastase but in a much greater amount when alpha 1-antichymotrypsin reacts with porcine elastase than with human elastase. As a consequence of our findings, the specificity of alpha 1-antichymotrypsin, so far limited to the inhibition of chymotrypsin-like enzymes from pancreas and leukocyte origin, has to be extended to the two pancreatic elastases investigated in this work. A contribution of alpha 1-antichymotrypsin to the regulatory balance between plasma inhibitors and human pancreatic elastase 2 in pancreatic diseases is suggested.  相似文献   

16.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

17.
Human neutrophil cathepsin G from normal donors has been purified 82-fold using an isolation procedure which included sequential sodium chloride extraction, Aprotonin-Sepharose affinity chromatography, CM-cellulose ion-exchange chromatography, and AcA44 gel filtration chromatography. The inclusion of this last purification step was crucial for separating inactive lower molecular weight species from the active forms of neutrophil cathepsin G and resulted in a higher specific activity of the final preparation. SDS polyacrylamide gradient gel electrophoresis of the purified reduced protein demonstrated three discrete polypeptides of Mr 31,000, 30,000, and 29,500. Peptide analysis of tryptic digests indicated that these three polypeptides are structurally related to each other and represent microheterogeneity of the purified protein. The cathepsin G peptide maps were distinctly different from the peptide maps of neutrophil elastase. The apparent isoelectric points of these forms as determined by two-dimensional electrophoresis was approximately 8.0. Utilizing microsequencing techniques, the first 25 residues of normal neutrophil cathepsin G have been determined and shown to be identical (except for residue 11) with the sequence of 21 residues of cathepsin G isolated from leukemic myeloid cells. A high degree of homology was found when the amino-terminal regions of neutrophil cathepsin G, rat mast cell protease II (65%) and two human serine proteinases, factor D (52%) and neutrophil elastase (48%), were compared. A precipitating monospecific antiserum to cathepsin G was produced by repeated immunizations of guinea pigs. This antiserum has been used in immunoblotting experiments to demonstrate that the intracellular form(s) of this enzyme is the same approximate Mr as the purified enzyme, and to develop a solid-phase radioimmunoassay for measuring neutrophil cathepsin G in the range 5-50 ng/ml.  相似文献   

18.
Kim WM  Kang K 《Molecules and cells》2000,10(5):498-504
Human neutrophil elastase (HNE, EC 3. 4. 21. 37) is a causative factor of inflammatory diseases, including emphysema and rheumatoid arthritis. Enzymatic characterization is important for the development of new drugs involved in the regulation of this enzyme. In this study, we investigated the enzymatic and biochemical properties of five different elastolytic enzymes, with a molecular mass between 24 kDa and 72 kDa. Three elastases, molecular masses of 27, 29, 31 kDa, might be elastase isozymes that have the same NH2-terminal amino acid sequences of Ile-Val-Gly-Gly-Arg-Arg-Ala. The 24-kDa enzyme, which showed the identical NH2-terminal amino acid sequences to elastase, was a degraded fragment of native elastase. The elastolytic activity was conserved at the 6/7 domain of the NH2-terminal region. The inhibitory characteristics of PMSF, DipF were the same as those of native elastases. The 72-kDa molecule, which showed elastolytic activity, might be a trimer formed between native elastases (31 kDa and 29 kDa) and a cathepsin G-like enzyme, which did not show elastolytic activity but enhanced the elastolytic activity of neutrophil elastase. Although this cathepsin G-like enzyme showed weak cathepsin G activity, it has distinguishable NH2-terminal sequences of Ile-Val-Gly-Gly-Ser-Arg-Ala- from those of elastase or cathepsin G. The potentiation of elastolytic activity could be a result of the trimerization of native elastase with a cathepsin G-like enzyme, and was then weakly inhibited by serine protease inhibitors, such as PMSF, DipF. Therefore, we suggest the cathepsin G-like enzyme to be a novel enzyme, which has an important role in the development of inflammation.  相似文献   

19.
Summary The ultrastructural localization of a range of hydrolytic enzymes has been investigated in the granular haemocytes of the marine musselMytilus edulis. Arylsulphatase activity and immunocytochemical localization of -glucuronidase and elastase were demonstrated within the large granules of the haemocytes. Lysozyme and cathepsin B were both localized within all sizes of granule, however, at high dilutions the primary antibody against lysozyme was also restricted to the large granules. The labelling density for cathepsin B antibody tended to be very low. Antibodies for cathepsin G showed a clear, discrete labelling which was restricted to the granules of haemocytes containing small granules. The fact that antibodies raised against human proteinases recognize invertebrate enzymes suggests that there must be a certain degree of structural similarity between the human proteinases and the enzymes present in the mussel haemocytes indicating either convergence or conservation of the enzyme molecules. The presence of a range of hydrolytic enzymes including proteinases, glycosidases and sulphatases within the large granules shows that these granules are a form of lysosome. The reduction in activity of lysosomal enzymes in haemocytes following adhesion to glass is evidence for release of the enzymes from the granules (degranulation). The possibility of a serine protease being specifically associated with the small granules and its role as a cytolysin are discussed.  相似文献   

20.
A procedure was developed for a rapid staining of proteins in polyacrylamide gels with tannic acid and the extraction of enzymatic activity from the gels. Lysozyme and Taka-amylase A were stained with tannic acid and localized on pH 4.3, and 8.0 and 9.5 gels, respectively. After the gels were rinsed in buffer solutions, the activities of the enzymes were recovered in good yield from the gels. The use of these techniques is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号