首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Plant-soil feedback may vary across host species and environmental gradients. The relative importance of these biotic versus abiotic drivers of feedback will determine the stability of plant and microbial communities across environments. If plant hosts are the main driver of soil microbial communities, plant-soil feedback may be stable across changing environments. However, if microbial communities vary with environmental gradients, feedback may also vary, limiting its capacity to predict plant distributions.

Methods

We characterized arbuscular mycorrhizal (AM) fungi across tree plantations and a primary Neotropical rainforest. We then performed a plant-soil feedback pot experiment of AM fungi from these plantations on three plant species and related feedback and AM fungal communities in the field.

Results

In the field, temporal and spatial variation in AM fungal composition was similar in magnitude to variation across plant host species. Composition of AM fungi in the pot experiment significantly differed from the field plots. Furthermore, differential feedback was explained by shifts in AM fungal composition only for one plant host species (Hyeronima alchorneoides) in the pot experiment.

Conclusions

Natural AM fungal communities were temporally and spatially heterogeneous and AM fungal communities in the greenhouse did not reflect natural soils. These factors led to heterogeneous and unpredictable feedback responses, which suggests that applying greenhouse derived plant-soil feedback trends to predict plant coexistence in natural systems may be misleading.
  相似文献   

2.

Aims

Root fungal relationships in forest understory may be affected by tree harvesting. Deschampsia flexuosa forms a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi functioning in nutrient uptake, and a more loose association with dark septate endophytic (DSE) fungi. We asked how harvesting affects fungal colonisations and whether DSE is more prone to change than AM.

Methods

Deschampsia flexuosa plants were sampled close to a control or a cut tree after top-canopy harvesting in a primary successional site. Colonisations were studied using light microscopy. Shoot N%, vegetation cover and soil nutrients were determined.

Results

Tree harvesting did not affect vegetation and soil parameters, except potassium (K+) increasing near cut trees. AM colonisation did not change, while DSE increased. Shoot N% increased with increasing DSE near cut trees. Hyaline septate (HSE) hyphae and soil K+ and magnesium (Mg2+) were positively correlated near control trees. Lichen cover and HSE correlated negatively.

Conclusions

DSE colonisation increased but AM did not change after harvesting. Positive correlation of DSE with shoot N% near cut trees may suggest a role for DSE in favouring plant nitrogen uptake after disturbance in an open microsite. HSE may play a role in K+ and Mg2+ uptake.
  相似文献   

3.

Aims

We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM).

Methods

We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm?3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference).

Results

Good recoveries of soil mass (96%), OC and TN (both ~ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P.

Conclusions

The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.
  相似文献   

4.

Background and aims

Drought events, agricultural practices and plant communities influence microbial and soil abiotic parameters which can feedback to fodder production. This study aimed to determine which soil legacies influence plant biomass production and nutritional quality, and its resistance and recovery to extreme weather events.

Methods

In a greenhouse experiment, soil legacy effects on Lolium perenne were examined, first under optimal conditions, and subsequently during and after drought. We used subalpine grassland soils previously cultivated for two years with grass communities of distinct functional composition, and subjected to combinations of climatic stress and simulated management.

Results

The soil legacy of climatic stress increased biomass production of Lolium perenne and its resistance and recovery to a new drought. This beneficial effect resulted from higher nutrient availability in soils previously exposed to climatic stresses due to lower competitive abilities and resistance of microbial communities to a new drought. This negative effect on microbial communities was strongest in soils from previously cut and fertilized grasslands or dominated by conservative grasses.

Conclusion

In subalpine grasslands more frequent climatic stresses could benefit fodder production in the short term, but threaten ecosystem functioning and the maintenance of traditional agricultural practices in the long term.
  相似文献   

5.

Background and aims

Elemental uptake in serpentine floras in eastern North America is largely unknown. The objective of this study was to determine major and trace element concentrations in soil and leaves of three native pseudo-metallophyte C4 grasses in situ at five sites with three very different soil types, including three serpentine sites, in eastern USA.

Methods

Pseudo-total and extractible concentrations of 15 elements were measured and correlated from the soils and leaves of three species at the five sites.

Results

Element concentrations in soils of pseudo-metallophytes varied up to five orders of magnitude. Soils from metalliferous sites exhibited higher concentrations of their characteristic elements than non-metalliferous. In metallicolous populations, elemental concentrations depended on the element. Concentrations of major elements (Ca, Mg, K) in leaves were lower than typical toxicity thresholds, whereas concentrations of Zn were higher.

Conclusions

In grasses, species can maintain relatively low metal concentrations in their leaves even when soil concentrations are richer. However, in highly Zn-contaminated soil, we found evidence of a threshold concentration above which Zn uptake increases drastically. Finally, absence of main characteristics of serpentine soil at one site indicated the importance of soil survey and restoration to maintain serpentinophytes communities and avoid soil encroachment.
  相似文献   

6.

Background and Aims

The structures of arbuscular mycorrhizal (AM) fungi (hyphae, arbuscules, vesicles, spores) are used to make inferences about fungal activity based on stored samples, yet the impact of storage method has not been quantified, despite known effects of temperature and host condition on AM fungal colonisation.

Methods

We measured how four storage treatments (cool or ambient conditions, with and without plant shoots attached, i.e. n?=?four treatment combinations) affected AM fungal colonisation of subterranean clover (Trifolium subterraneum L.) after 0, 2, 6 and 10 days of storage. Roots were assessed for colonisation of fine root endophyte and coarse AM fungi.

Results

For coarse AM fungi, total colonisation was unaffected, but arbuscules were reduced at Day 6 and increased again by Day 10, except Ambient-Minus-Shoots. There was a loss of vesicles in all treatments at Day 2, and an increase in spore number at Day 6 within Cool-Plus-Shoots. In contrast, for fine root endophyte, total colonisation was greatly reduced at Day 6 but increased again at Day 10, in all except the Cool-Plus-Shoots treatment.

Conclusions

Our data demonstrate that AM fungal activity is not suspended in commonly used plant storage conditions. Storage method and time impacted AM fungal colonisation, particularly for fine root endophyte. We recommend samples are processed within 2 days of harvest.
  相似文献   

7.

Background and aims

Phosphorus (P) availability is crucial for forest ecosystem productivity and soil organic matter (SOM) is an important source for P. This study was conducted to reveal carbon (C), nitrogen (N) and P distributions in functional SOM fractions. We hypothesised that (1) most of the organic P (Porg) is part of the particulate SOM, (2) particulate SOM stores increasing share of P with decreasing soil P content and (3) the C:Porg ratio of mineral-associated SOM is smaller than that of particulate SOM.

Methods

We analysed soil samples from five temperate forest sites (Fagus sylvatica) under different geological parent material with a wide range of total P concentrations. Density fractionation was used to separate free light fraction (fLF), particulate SOM occluded within soil aggregates (occluded light fraction; oLF), and mineral associated SOM (heavy fraction; HF). We determined the mass balance of P in these fractions, in addition to the C and N concentrations. Additionally, the P speciation of the topsoil was analysed by X-ray absorption near edge structure (XANES) spectroscopy at the P K-edge.

Results

The fLF contained 18–54% and the oLF 1–15% of total P (Ptot). High percentage of P in these light fractions was associated to soil minerals. Phosphorous in particulate SOM within aggregates tend to increase with decreasing soil P. The HF containing mineral-associated OM, comprised 38–71% of Ptot and their C:Porg ratios were consistently lower than those of the fLF irrespective of the P status of the soil.

Conclusions

We show that all three functional SOM fractions contain variable amount of both organic and inorganic P species. The free light fraction shows no response to changing P stocks of soils.. Despite physically protected particulate SOM, oLF, becomes increasingly relevant as P cache in soils with declining P status.
  相似文献   

8.

Background and aims

Carpobrotus spp. are amongst the most impactful and widespread plant invaders of Mediterranean habitats. Despite the negative ecological impacts on soil and vegetation that have been documented, information is still limited about the effect by Carpobrotus on soil microbial communities. We aimed to assess the changes in the floristic, soil and microbial parameters following the invasion by Carpobrotus cfr. acinaciformis within an insular Mediterranean ecosystem.

Methods

Within three study areas a paired-site approach, comparing an invaded vs. a non-invaded plot, was established. Within each plot biodiversity indexes, C and N soil content, pH and microbial biomass and structure (bacterial and fungal) were assessed.

Results

Invaded plots showed a decrease of α-species richness and diversity. The least represented plant species in invaded plots were those related to grassland habitats. In all invaded soils, a significant increase of carbon and nitrogen content and a significant decrease of pH were registered. Carpobrotus significantly increased bacterial and fungal biomass and altered soil microbial structure, particularly favoring fungal growth.

Conclusions

Carpobrotus may deeply impact edaphic properties and microbial communities and, in turn, these strong modifications probably increase its invasive potential and its ability to overcome native species, by preventing their natural regeneration.
  相似文献   

9.

Background and aims

Soil microbial communities influence nutrient cycling, chemistry and structure of soil, and plant productivity. In turn, agronomic practices such as fertilization and crop rotation alter soil physical and chemical properties and consequently soil microbiomes. Understanding the long-term effects of agronomic practices on soil microbiomes is essential for improving agronomic practices to optimize these microbial communities for agricultural sustainability. We examine the composition and substrate-utilization profiles of microbial communities at the Morrow Plots in Illinois.

Methods

Microbial community composition is assessed with 16S rRNA gene sequencing and subsequent bioinformatic analyses. Community- level substrate utilization is characterized with the BIOLOG EcoPlate.

Results

Fertilizer and rotation treatments significantly affected microbial community structure, while substrate utilization was affected by fertilizer, but not crop-rotation treatments. Differences in relative abundance and occurrence of bacterial taxa found in fertilizer treatments can explain the observed differences in community level substrate utilization.

Conclusion

Long-term fertilization and crop-rotation treatments affect soil microbial community composition and physiology, specifically through chronic nutrient limitation, long-term influx of microbes and organic matter via manure application, as well as through changes in soil chemistry. Relatively greater abundance of Koribacteraceae and Solibacterales taxa in soils might prove useful as indicators of soil degradation.
  相似文献   

10.

Background and aims

Variations in root-associated fungal communities contribute to the so-called ‘crop rotation benefit’ on soil productivity. We assessed the effects of chickpea, lentil, and pea in wheat-based rotations, as compared to wheat monoculture, on the structure of root-associated fungal communities, and described the legacy of pulses on a following wheat crop.

Methods

The internal transcribed spacer (ITS) and 18S rRNA gene markers, and 454 amplicon pyrosequencing were used to describe the fungal communities of crop roots and rhizosphere soil in a field experiment and agronomic data were collected.

Results

Pulses influenced only the structure of the non-mycorrhizal fungal community of roots. Fusarium tricinctum, Clonostachys rosea, Fusarium redolens, and Cryptococcus sp. were specific to certain crops. Despite the absence of selective effects of pulses on their associated arbuscular mycorrhizal (AM) fungal community, pea had a legacy effect on the structure of the AM fungal community associated with the roots of the following wheat crop, in one of the two year/sites examined. Species of Mortierella, Cryptococcus, and Paraglomus in wheat rhizosphere soil may benefit yield, whereas species of Fusarium, Davidiella, Lachnum, Sistotrema and Podospora may reduce yield.

Conclusion

The effect of pulse crops on root fungal communities varied with rotation crop species. Pulses had various effects on the physiology of the following wheat crop, including increased productivity.
  相似文献   

11.

Background and Aims

Biological soil crust (biocrust) communities, though common and important in the intermountain west, have received little research attention. There are gaps in understanding what influences biocrust species’ abundance and distributions in this ecoregion. Climatic, edaphic, topographic, and biotic forces, in addition to anthropogenic disturbance can all influence the biocrust.

Methods

We determined the relative influence of several possible environmental filters in biocrust communities of western Montana (USA) grasslands at two spatial scales. The larger scale exploited strong topographically-dictated climatic variation across >60km2, while the smaller scale focused on differences among distinct microsites within ~700m2 plots.

Results

We detected a total of 96 biocrust taxa, mostly lichens. Biocrust richness at each site ranged from 0 to 39 species, averaging 14 species. Insolation, aspect, and disturbance history were the strongest predictors of biocrust richness, abundance, and species turnover across the landscape; soil texture was influential for some biocrust community properties. Steep, north-facing slopes that receive longer periods of shade harbored higher diversity and cover of biocrust than south-facing sites. At a small scale, interspaces among native herbaceous communities supported the greatest diversity of biocrust species, but microsites under shrub canopies supported the greatest cover.

Conclusions

We found that, among the variables investigated, tillage, insolation, soil texture and the associated vegetation community were the most important drivers of biocrust abundance and species richness. This study can inform the practice of restoration and conservation, and also guide future work to improve predictions of biocrust properties.
  相似文献   

12.

Objectives

This short commentary examines the factors that led to Food and Drug Administration’s approval of the first plant-derived biologic.

Results

In 2012, the first plant-derived protein pharmaceutical (biologic) was approved for commercial use in humans. The product, a recombinant form of human β-glucocerebrosidase marketed as ELELYSO, was developed by Protalix Biotherapeutics (Carmiel, Israel). The foresight to select this particular therapeutic product for development, flawless production pipeline, and serendipity seem to provide the key in explaining how ELELYSO became the first plant-derived biologic to achieve approval by Food and Drug Administration.

Conclusions

While the circumstances that enabled Protalix and its scientists to become the first to arrive at this historic milestone are perhaps unique, it is anticipated that more biologics will follow suit in winning regulatory endorsement.
  相似文献   

13.

Aims

This study aimed at assessing whether patch type (i.e., under-shrub soil patch and inter-shrub soil patch) has an effect on soil microbes and how different shrub species altered the soil microbes through understanding soil microbial activity, biomass, and community structure.

Methods

We characterized the soil microbes in under-shrub and inter-shrub soil patches in three shrublands (Artemisia ordosica, Salix psammophila, and Caragana microphylla), respectively, in the Mu Us Desert, China, using microbial activity indicators, chloroform fumigation-extraction analysis, and high-throughput 16S rRNA gene sequencing.

Results

Members of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, Firmicutes, and Gemmatimonadetes were dominant. Inter-shrub soil patch differed from under-shrub soil patch in soil bacterial composition, microbial enzyme activity, and biomass, but not in diversity. Soil collected in A. ordosica shrubland exhibited the highest microbial enzyme activity, biomass, and diversity. Shrub species had significant effects on community structure, primarily the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes.

Conclusions

The results indicated that both shrub species and patch type had effects on soil microbial communities. In shrub-dominated desert ecosystems, spatial heterogeneity of soil nutrients and moisture might not be the main factors underlying variations in bacterial diversity. The different compositions of microbial communities in various shrublands provide a foundation for further research into the mechanisms of soil organic carbon accumulation.
  相似文献   

14.

Objective

To use a transient expression system to express a truncated human tissue plasminogen activator (K2S) gene in cucurbit plants.

Results

The recombinant tissue plasminogen activator protein (K2S form) was expressed in active form in cucurbit plants. Its molecular weight was 43 kDa. The plant-derived rt-PA was determined using goat anti-rabbit antibody by western blotting. Among the infected lines, the highest expression of rt-PA was 62 ng/100 mg per leaf tissue as measured by ELISA. The enzymatic activity of the plant-derived rt-PA was 0.8 IU/ml.

Conclusions

The K25 form of rt-PA was expressed for the first time using the viral expression system. Plant-derived rt-PA showed similar potency to commercially-available PA.
  相似文献   

15.

Aims

The objectives of this study were to evaluate (1) the fertilizer potential of bone char, (2) the effects of wood biochar on plant-available phosphorus (P), and (3) the role of root-mycorrhizae-biochar interactions in plant P acquisition from a P-fixing soil.

Methods

Incubation and pot experiments were conducted with a P-fixing soil and maize with or without root hairs and arbuscular mycorrhizae (AM) inoculation. Olsen-, resin-P and plant P accumulation were used to estimate P availability from bone char, co-pyrolyzed bone char-wood biochar, and separate bone char and wood biochar additions produced at 60, 350 and 750 °C, and Triple Superphosphate (TSP).

Results

Maize inoculated with AM showed similar P accumulation when fertilized with either 750 °C bone char or TSP. Pyrolyzing bone did not increase extractable P in soil in comparison to unpyrolyzed bone, apart from a 67 % increase in resin-extractable P after additions of bone char pyrolyzed at 350 °C. Despite greater Olsen-P extractability, co-pyrolysis of bone with wood reduced maize P uptake. Wood biochars reduced resin-P from bone char by 14–26 %, whereas oven-dried wood increased resin-P by 23 %.

Conclusions

Bone char is an effective P fertilizer, especially if root-AM interactions are simultaneously considered. Biochar influences plant access to soil P and requires careful management to improve P availability.
  相似文献   

16.

Aims

Understanding the linkage of soil respiration (Rs) with forest development is essential for long-term C cycle models. We estimated the variation and temperature sensitivity (Q10 value) of Rs and its hetero-, (Rh) and autotrophic (Ra) components in relation to abiotic and biotic factors in Norway spruce stands of different ages, and the effect of trenching on microbial and soil characteristics.

Methods

Trenching method was used to partition Rs into Rh and Ra. Ingrowth core method was used to estimate fine root production. Soil microbial biomass was measured using manometric respirometers.

Results

Rs varied in differently aged stands demonstrating non-linear response to development stage. The variation of Rs was explained by changes in biotic factors rather than by changes in soil microclimate. Rh was more sensitive to Ts than Rs or Ra. After 4 years of trenching soil pH, N, SOM and dehydrogenase activity were significantly changed in trenched plots compared to control plots.

Conclusions

Different Q10 values of Rh and Ra in stands of different ages indicate the importance of Rs partitioning. Trenching should be used during a limited number of years because of the possible changes in chemical characteristics of soil and in the activity of soil microbial community.
  相似文献   

17.

Background and aims

Mineralization of soil organic matter (SOM) constitutes a major carbon flux to the atmosphere. The carbon use efficiency (CUE) of the saprotrophic microorganisms mineralizing SOM is integral for soil carbon dynamics. Here we investigate how the CUE is affected by temperature, metabolic conditions, and the molecular complexity of the substrate.

Methods

We incubated O-horizon soil samples (with either 13C–glucose or 13C–cellulose) from a boreal coniferous forest at 4, 9, 14, and 19 °C, and calculated CUEs based on the amount of 13C–CO2 and 13C–labelled microbial biomass produced. The effects of substrate, temperature, and metabolic conditions (representing unlimited substrate supply and substrate limitation) on CUE were evaluated.

Results

CUE from metabolizing glucose was higher as compared to cellulose. A slight decrease in CUE with increasing temperature was observed in glucose amended samples (but only in the range 9–19 °C), but not in cellulose amended samples. CUE differed significantly with metabolic conditions, i.e. CUE was higher during unlimited growth conditions as compared to conditions with substrate limitation.

Conclusions

We conclude that it is integral to account for both differences in CUE during different metabolic phases, as well as complexity of substrate, when interpreting temperature dependence on CUE in incubation studies.
  相似文献   

18.

Purpose

In this paper, we present a case study of soil quality assessments for Finnish arable crop production. The aim was to assess the applicability of three soil quality indicators by testing available assessment models and data in the context of a life cycle assessment (LCA). The indicators were erosion, soil organic matter (SOM) and compaction, which are crucial effects of soil cultivation in Finland, strongly affecting the cultivation fitness of soil especially in the long run.

Methods

In this case study, we assessed the effects of four Finnish arable crop rotations. The functional unit was 1 metric ton of cereal or turnip rape seed on the farm. The model used for assessing SOM was Yasso07, VIHMA for erosion and COMPSOIL for compaction. We used data from two conventional and two organic farms, collected from 4-year-long crop rotations that included turnip rape, cereals and green manure ley. Farm data were supplemented with geographic information and data from the literature.

Results and discussion

The data needed for the assessment of soil erosion and soil carbon decline was in the main readily available at farm level in the Finnish agricultural database, the Finnish Meteorological Institute, and from geographic information systems. However, more data would have been needed in the cultivation history of the field parcels for an accurate assessment of soil carbon decline. With regard to soil compaction, we had difficulties in finding suitable data especially on machinery use, which is not available in public data sources. Moreover, the reliability of the compaction model COMPSOIL was questioned, as its performance has not been validated in Finnish conditions.

Conclusions

The erosion and SOM models were found to be suitable for use in LCAs. However, the model for the assessment of compaction was considered too difficult to use. Furthermore, the compaction model results need to be validated with field measurements to be considered reliable in Finnish conditions. This study provides a starting point for developing soil quality assessment in Finnish agricultural production.
  相似文献   

19.

Background

The fungus Colletotrichum is a plant pathogen that causes the anthracnose disease, resulting in huge losses in various crops including the rose-scented geranium (Pelargonium graveolens). Although the bacterial community associated with plants has an important role in the establishment of plant diseases, little is known about what happens in P. graveolens.

Aims

To increase the knowledge about the bacterial community associated with P. graveolens and its relationship with anthracnose disease symptoms.

Methods

Quantitative PCR and high-throughput sequencing were combined to determine the presence of the fungus Colletotrichum and to reveal the bacterial communities associated with different plant parts – root, stem and leaf – and in the rhizosphere and bulk soil, and also to determine the respective bacterial communities associated with P. graveolens leaves symptomatic and asymptomatic for anthracnose disease.

Results

The fungus Colletotrichum was detected in all plant parts and in the surrounding soil. Bacterial communities varied spatially in plants, and the disease symptoms also influenced the composition of the bacterial community. Abundances of operational taxonomic units (OTUs) assigned to the phylum Actinobacteria and to the genus Streptococcus were greatly increased in asymptomatic leaves.

Conclusions

The bacterial community associated to geranium leaves responds to anthracnose symptoms.
  相似文献   

20.

Aims

Trifolium subterraneum L. is the predominant annual pasture legume in southern Australia. Cultivars with improved phosphorus (P) foraging ability would improve the P-use efficiency of agricultural systems. We therefore investigated variation in root traits related to P-uptake among six cultivars.

Methods

Micro-swards were grown at six levels of P in field soil with indigenous arbuscular mycorrhizal (AM) fungi for six weeks. Dry matter yield, tissue P concentration, rhizosphere carboxylates, AM fungal colonisation and root morphological traits were measured.

Results

The cultivars showed similar shoot and root yield responses to P supply. Average root diameter did not change, specific root length (SRL) increased and root tissue density (RTD) decreased with increased P supply. Amounts of total rhizosphere carboxylates were low (<1.2 nmol cm?1 root). The percentage of root length colonised by AM fungi was greatest (29–43 %) at an intermediate level (8 mg kg?1 dry soil) of P supply.

Conclusions

Most differences among cultivars were reasonably consistent across P supply levels, indicating greater numbers of lines could be screened reliably at a single P level. Low colonisation by AM fungi at low P supply deserves consideration when selecting soils for cultivar comparisons. Increased SRL and decreased RTD at high P supply likely result from self-shading within the micro-swards and warrant further investigation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号