首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many metabolic reactions in the endoplasmic reticulum (ER) require high levels of energy in the form of ATP, which is important for cell viability. Here, we report on an adenine nucleotide transporter residing in the ER membranes of Arabidopsis thaliana (ER-ANT1). Functional integration of ER-ANT1 in the cytoplasmic membrane of intact Escherichia coli cells reveals a high specificity for an ATP/ADP antiport. Immunodetection in transgenic ER-ANT1-C-MYC-tag Arabidopsis plants and immunogold labeling of wild-type pollen grain tissue using a peptide-specific antiserum reveal the localization of this carrier in ER membranes. Transgenic ER-ANT1-promoter-beta-glucuronidase Arabidopsis lines show high expression in ER-active tissues (i.e., pollen, seeds, root tips, apical meristems, or vascular bundles). Two independent ER-ANT1 Arabidopsis knockout lines indicate a high physiological relevance of ER-ANT1 for ATP transport into the plant ER (e.g., disruption of ER-ANT1 results in a drastic retardation of plant growth and impaired root and seed development). In these ER-ANT1 knockout lines, the expression levels of several genes encoding ER proteins that are dependent on a sufficient ATP supply (i.e., BiP [for luminal binding protein] chaperones, calreticulin chaperones, Ca2+-dependent protein kinase, and SEC61) are substantially decreased.  相似文献   

2.
A C Mustilli  C Bowler 《The EMBO journal》1997,16(19):5801-5806
Plants have developed flexible mechanisms to respond appropriately to environmental signals. These stimuli are transduced by largely unknown signalling pathways that are likely to be modulated by endogenous developmental signals to produce an integrated response that coordinately regulates gene expression. Light is a critical environmental signal that controls many aspects of plant development via a series of photoreceptors that are able to respond to different light wavelengths. Light is also the principal energy source for photosynthesis. The photosynthetic products are carbohydrates which are translocated in the form of sucrose from the photosynthetic (source) to non-photosynthetic (sink) organs. Consequently, the control of photoregulated genes must integrate developmental inputs with signals derived from the photoreceptors, from the photosynthetic apparatus and from metabolites such as sucrose.  相似文献   

3.
Electrical signals [action potentials (APs) and variation potentials (VPs)] induced by local stimuli are a mechanism that underlies rapid plant response to environmental factors. Such signals induce a number of functional responses, including changes in photosynthesis. Ultimately, these responses are considered to increase plant resistance to stress factors, but this question has been poorly investigated. We studied the influence of VP on photosynthesis and resistance of the photosynthetic machinery to heating in leaves of pea (Pisum sativum). Localized burning induced a VP that decreased photosynthesis parameters [CO2 assimilation rate and quantum yields of photosystem I (PSI) and photosystem II (PSII)]. The photosynthetic response was initiated by a decrease in photosynthesis dark‐stage activity, which in turn increased resistance of PSI to heating. Three results supported this hypothesized mechanism: (1) the magnitude of VP‐induced decrease in CO2 assimilation and enhanced PSI resistance to heating were highly correlated; (2) the VP influence on PSI resistance to heating was suppressed under a low external CO2 concentration and (3) decreasing external CO2 concentration imitated the VP‐induced photosynthetic response and increased PSI resistance to heating.  相似文献   

4.
5.
Chemical signaling under abiotic stress environment in plants   总被引:1,自引:0,他引:1  
Many chemicals are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery and regulating various transporters/pumps and biochemical reactions. These chemicals include calcium (Ca2+), cyclic nucleotides, polyphosphoinositides, nitric oxide (NO), sugars, abscisic acid (ABA), jasmonates (JA), salicylic acid (SA) and polyamines. Ca2+ is one of the very important ubiquitous second messengers in signal transduction pathways and usually its concentration increases in response to the stimuli including stress signals. Many Ca2+ sensors detect the Ca2+ signals and direct them to downstream signaling pathways by binding and activating diverse targets. cAMP or cGMP protects the cell with ion toxicity. Phosphoinositides are known to be involved both in transmission of signal across the plasma membrane and in intracellular signaling. NO activates various defense genes and acts as a developmental regulator in plants. Sugars affect the expression of many genes involved in photosynthesis, glycolysis, nitrogen metabolism, sucrose and starch metabolism, defense mechanisms and cell cycle regulation. ABA, JA, SA and polyamines are also involved in many stress responses. Cross-talk between these chemical signaling pathways is very common in plant responses to abiotic and bitotic factors. In this article we have described the role of these chemicals in initiating signaling under stress conditions mainly the abiotic stress.Key words: ABA, abiotic stress, Ca2+ binding proteins, calcium signaling, cyclic nucleotides, nitric oxide, phosphoinositides signaling, signal transduction, sugar signaling  相似文献   

6.

AGPase, ADP glucose pyrophosphorylase
GS, glutamine synthetase
GOGAT, glutamate : oxoglutarate amino transferase
NADP-ICDH, NADP-dependent isocitrate dehydrogenase
NR, nitrate reductase
OPPP, oxidative pentose phosphate pathway
3PGA, glycerate-3-phosphate
PEPCase, phosphoenolpyruvate carboxylase
Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase
SPS, sucrose phosphate-synthase

This review first summarizes the numerous studies that have described the interaction between the nitrogen supply and the response of photosynthesis, metabolism and growth to elevated [CO2]. The initial stimulation of photosynthesis in elevated [CO2] is often followed by a decline of photosynthesis, that is typically accompanied by a decrease of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an accumulation of carbohydrate especially starch, and a decrease of the nitrogen concentration in the plant. These changes are particularly marked when the nitrogen supply is low, whereas when the nitrogen supply is adequate there is no acclimation of photosynthesis, no major decrease in the internal concentration of nitrogen or the levels of nitrogen metabolites, and growth is stimulated markedly. Second, emerging evidence is discussed that signals derived from nitrate and nitrogen metabolites such as glutamine act to regulate the expression of genes involved in nitrate and ammonium uptake and assimilation, organic acid synthesis and starch accumulation, to modulate the sugar-mediated repression of the expression of genes involved in photosynthesis, and to modulate whole plant events including shoot–root allocation, root architecture and flowering. Third, increased rates of growth in elevated [CO2] will require higher rates of inorganic nitrogen uptake and assimilation. Recent evidence is discussed that an increased supply of sugars can increase the rates of nitrate and ammonium uptake and assimilation, the synthesis of organic acid acceptors, and the synthesis of amino acids. Fourth, interpretation of experiments in elevated [CO2] requires that the nitrogen status of the plants is monitored. The suitability of different criteria to assess the plant nitrogen status is critically discussed. Finally the review returns to experiments with elevated [CO2] and discusses the following topics: is, and if so how, are nitrate and ammonium uptake and metabolism stimulated in elevated [CO2], and does the result depend on the nitrogen supply? Is acclimation of photosynthesis the result of sugar-mediated repression of gene expression, end-product feedback of photosynthesis, nitrogen-induced senescence, or ontogenetic drift? Is the accumulation of starch a passive response to increased carbohydrate formation, or is it triggered by changes in the nutrient status? How do changes in sugar production and inorganic nitrogen assimilation interact in different conditions and at different stages of the life history to determine the response of whole plant growth and allocation to elevated [CO2]?  相似文献   

7.
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-κB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6M241T and US2, but not the soluble degradation substrate α1-antitrypsin nullHK. These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.  相似文献   

8.
9.
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard‐cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar‐phosphorylating enzyme involved in sugar‐sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback‐inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.  相似文献   

10.
The endoplasmic reticulum (ER) is an organelle in the cell where proteins are created and folded. Folding is a very elaborate process that is often interrupted by various biotic and abiotic stresses, leading to the formation of unfolded and misfolded proteins called ER stress. Dithiothreitol (DTT)-induced unfolded protein response (UPR) in endoplasmic reticulum (ER) has been recently reported in plants. Also, previous studies demonstrated that treatment with polyethylene glycol (PEG6000) could stimulate water deficit in crops. However, further researches should be conducted to elucidate the molecular mechanism of ER stress response and the relationship between water deficiency and ER. In this study, we examined the expressions of sucrose synthase (SuS) gene, proline metabolic genes and abscisic aldehyde oxidase (AAO3) gene in maize seedlings that were subjected to DTT and PEG induced combined stresses by using quantitative real-time RT-PCR. Three weeks old detached maize seedlings were treated with or without DTT and PEG6000 for 12 h. The treatment with DTT increased about 2-fold the expression of gene encoding proline synthesis enzyme, pyrroline-5-carboxylate synthetase (P5CS) but no statistically affected the proline catabolism enzyme, proline dehydrogenase (ProDH) in comparison with un-treated seedlings. PEG treatment was also up-regulated P5CS while it was down-regulated ProDH. The relative expression levels of SuS and AAO3 genes statistically enhanced about 2.5 fold under the DTT-induced ER stress. Likewise, the expression levels of SuS and AAO3 genes were up-regulated in the detached seedlings exposed to PEG-induced water deficit. Conversely, the induced gene expressions were down-regulated under the combined stress, the DTT-induced ER stress and PEG-induced water deficit in comparison with the singular stress responses (DTT or PEG). The results indicated that the expressions of genes, related to the synthesis of some signal osmolyte compounds such as proline and sucrose can be suppressed when ER stress occurred under water deficiency in maize seedlings. The changes in the expressions of genes involved in osmolyte and ABA metabolism can be related to ER stress response as well as variations in water status.  相似文献   

11.
12.
Conformational diseases are a class of disorders associated with aberrant protein accumulation in tissues and cellular compartments. Z alpha1-antitrypsin (A1AT) deficiency is a genetic disease associated with accumulation of misfolded A1AT in the endoplasmic reticulum (ER) of hepatocytes. We sought to identify intracellular events involved in the molecular pathogenesis of Z A1AT-induced liver disease using an in vitro model system of Z A1AT ER accumulation. We investigated ER stress signals induced by Z A1AT and demonstrated that both the ER overload response and the unfolded protein response were activated by mutant Z A1AT, but not wild-type M A1AT. Interestingly, activation of the unfolded protein response pathway required an additional insult, whereas NF-kappa B activation, a hallmark of the ER overload response, was constitutive. These findings have important implications for the design of future therapeutics for Z A1AT liver disease and may also impact on drug design for other conformational diseases.  相似文献   

13.
Convergent energy and stress signaling   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
16.
Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H2O2 removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.  相似文献   

17.
18.
植物SnRKs家族在胁迫信号通路中的调节作用   总被引:2,自引:0,他引:2  
张金飞  李霞 《植物学报》2017,52(3):346-357
蔗糖非发酵1(SNF1)相关蛋白激酶家族(SnRKs)是植物胁迫响应过程中的一类关键蛋白激酶。在响应生物胁迫时,SnRKs可通过参与活性氧和水杨酸介导的信号转导途径,增强植物对生物侵害的耐受性。在响应非生物胁迫时,SnRKs通过脱落酸(ABA)介导的信号通路,增强植株对干旱、盐碱和高温等的耐受性;且通过独立于ABA的信号通路,SnRKs可调控胞内能量状态,维持离子平衡。该文总结了SnRKs蛋白激酶作为胁迫信号通路中的主要调节因子的最新研究进展,并展望了未来的研究方向。  相似文献   

19.
Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2) is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER) stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response.  相似文献   

20.
Abstract. In the first part of this review, I discuss how we can predict the direct short-term effect of enhanced CO2 on photosynthetic rate in C3 terrestrial plants. To do this, I consider: (1) to what extent enhanced CO2 will stimulate or relieve demand on partial processes like carboxylation, light harvesting and electron transport, the Calvin cycle, and end-product synthesis; and (2) the extent to which these various processes actually control the rate of photosynthesis. I conclude that control is usually shared between Rubisco (which responds sensitively to CO2) and other components (which respond less sensitively), and that photosynthesis will be stimulated by 25–75% when the CO2 concentration is doubled from 35 to 70 Pa. This is in good agreement with the published responses. In the next part of the review, I discuss the evidence that most plants undergo a gradual inhibition of photosynthesis during acclimation to enhanced CO2. I argue that this is related to an inadequate demand for carbohydrate in the remainder of the plant. Differences in the long-term response to CO2 may be explained by differences in the sink-source status of plants, depending upon the species, the developmental stage, and the developmental conditions. In the third part of the review, I consider the biochemical mechanisms which are involved in ‘sink’ regulation of photosynthesis. Accumulating carbohydrate could lead to a direct inhibition of photosynthesis, involving mechanical damage by large starch grains or Pi-limitation due to inhibition of sucrose synthesis. I argue that Pi is important in the short-term regulation of partitioning to sucrose and starch, but that its contribution to ‘sink’ regulation has not yet been conclusively demonstrated. Indirect or ‘adaptive’ regulation of photosynthesis is probably more important, involving decreases in amounts of key photosynthetic enzymes, including Rubisco. This decreases the rate of photosynthesis, and potentially would allow resources (e.g. amino acids) to be remobilized from the leaves and reinvested in sink growth to readjust the sink-source balance. In the final part of the review, I argue that similar changes of Rubisco and, possibly, other proteins are probably also involved during acclimation to high CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号