首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Exposure to either ionizing radiation or certain transition metals results in generation of reactive oxygen species that induce DNA damage, mutation, and cancer. Vitamin C (a reactive oxygen scavenger) is considered to be a dietary radioprotective agent. However, it has been reported to be genotoxic in the presence of certain transition metals, including copper. In order to explore the capacity of vitamin C to protect DNA from radiation-induced damage, and the influence of the presence of copper on this protection, we investigated vitamin C-mediated protection against radiation-induced damage to calf thymus DNA in vitro in the presence or absence of copper(II). Vitamin C (0.08-8.00 mM, pH 7.0) significantly reduced DNA damage induced by gamma-irradiation (30-150 Gy) by 30-50%, similar to the protective effect of glutathione. However, vitamin C plus copper (50 microM) significantly enhanced gamma-radiation-induced DNA damage. Low levels of added copper (5 microM), or chelation of copper with 1-N-benzyltriethylenetetraine tetrahydrochloride (BzTrien) and bathocuprinedisulfonic acid (BCSA), abolished the enhanced damage without diminishing the protective effect of vitamin C. These results indicate that vitamin C can act as: (1) an antioxidant to protect DNA damage from ionizing radiation; and (2) a reducing agent in the presence of copper to induce DNA damage. These effects are important in assessing the role of vitamin C, in the presence of mineral supplements or radioprotective therapeutic agents, particularly in patients with abnormally high tissue copper levels.  相似文献   

2.
DNA damage and autophagy   总被引:1,自引:0,他引:1  
Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.  相似文献   

3.

Background

Embryonic stem cells (ESCs) represent the point of origin of all cells in a given organism and must protect their genomes from both endogenous and exogenous genotoxic stress. DNA double-strand breaks (DSBs) are one of the most lethal forms of damage, and failure to adequately repair DSBs would not only compromise the ability of SCs to self-renew and differentiate, but will also lead to genomic instability and disease.

Scope of Review

Herein, we describe the mechanisms by which ESCs respond to DSB-inducing agents such as reactive oxygen species (ROS) and ionizing radiation, compared to somatic cells. We will also discuss whether the DSB response is fully reprogrammed in induced pluripotent stem cells (iPSCs) and the role of the DNA damage response (DDR) in the reprogramming of these cells.

Major Conclusions

ESCs have distinct mechanisms to protect themselves against DSBs and oxidative stress compared to somatic cells. The response to damage and stress is crucial for the maintenance of self-renewal and differentiation capacity in SCs. iPSCs appear to reprogram some of the responses to genotoxic stress. However, it remains to be determined if iPSCs also retain some DDR characteristics of the somatic cells of origin.

General Significance

The mechanisms regulating the genomic integrity in ESCs and iPSCs are critical for its safe use in regenerative medicine and may shed light on the pathways and factors that maintain genomic stability, preventing diseases such as cancer. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

4.
The single cell gel eletrophoresis or the comet assay was established in the freshwater snail Biomphalaria glabrata. For detecting DNA damage in circulating hemocytes, adult snails were irradiated with single doses of 2.5, 5, 10 and 20 Gy of 60Co gamma radiation. Genotoxic effect of ionizing radiation was detected at all doses as a dose-related increase in DNA migration. Comet assay in B. glabrata demonstrated to be a simple, fast and reliable tool in the evaluation of genotoxic effects of environmental mutagens.  相似文献   

5.
Glioblastoma-initiating cells (GICs) are self-renewing tumorigenic sub-populations, contributing to therapeutic resistance via decreased sensitivity to ionizing radiation (IR). GIC survival following IR is attributed to an augmented response to genotoxic stress. We now report that GICs are primed to handle additional stress due to basal activation of single-strand break repair (SSBR), the main DNA damage response pathway activated by reactive oxygen species (ROS), compared with non-GICs. ROS levels were higher in GICs and likely contributed to the oxidative base damage and single-strand DNA breaks found elevated in GICs. To tolerate constitutive DNA damage, GICs exhibited a reliance on the key SSBR mediator, poly-ADP-ribose polymerase (PARP), with decreased viability seen upon small molecule inhibition to PARP. PARP inhibition (PARPi) sensitized GICs to radiation and inhibited growth, self-renewal, and DNA damage repair. In vivo treatment with PARPi and radiotherapy attenuated radiation-induced enrichment of GICs and inhibited the central cancer stem cell phenotype of tumor initiation. These results indicate that elevated PARP activation within GICs permits exploitation of this dependence, potently augmenting therapeutic efficacy of IR against GICs. In addition, our results support further development of clinical trials with PARPi and radiation in glioblastoma.  相似文献   

6.
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. α-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP++NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

7.
《Free radical research》2013,47(10):1280-1290
Abstract

The formation of long-lived reactive protein species of bovine serum albumin (BSA), ovalbumin, casein and casein hydrolyzate with a half-life of 3–5 hours was shown using chemiluminescence induced by X-ray radiation. It was found that long-lived reactive protein species are capable of generating reactive oxygen species (ROS) (H2O2, OH?, HO2?, 1O2) in the aquatic environment over a long period of time in vitro. The interaction of X-ray-irradiated BSA with DNA in vitro led to the formation of 8-oxoguanine (8-oxo-7,8-dihydroguanine), a biomarker of oxidative damage to DNA. Some natural antioxidants are effective scavengers of ROS (inosine, tryptophan, methionine and ascorbate). They protect DNA from the action of long-lived reactive protein species leading to ROS generation and the formation of 8-oxoguanine. The intravenous injection of X-ray radiation-induced, long-lived reactive protein species to rats, as well as the peroral and intraperitoneal administration of these products to mice, gave rise to cytogenetic injuries in the cells of their red bone marrow through the formation of micronuclei in polychromatophilic erythrocytes. The administration of the same natural antioxidants used for in vitro experiments soon after irradiation made it possible to effectively eliminate the genotoxic action of oxidative stress caused by radiation-induced, long-lived reactive protein species. Our data represent clear evidence that the oxidative damage to proteins induced by X-rays is directly involved in the induction of a response to DNA damage in rodents.  相似文献   

8.
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq?/? mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.  相似文献   

9.
10.
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2′-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.  相似文献   

11.
The signature DNA lesion induced by ionizing radiation is clustered DNA damage. Gamma radiation-induced clustered DNA damage containing base lesions was investigated in plasmid DNA under cell mimetic conditions and in two cell lines, V79-4 (hamster) and HF19 (human), using bacterial endonucleases Nth (endonuclease III) and Fpg (formamidopyrimidine DNA glycosylase). Following irradiation with 60Co γ-rays, induction of double-strand breaks (DSB) and clustered DNA damage, revealed as DSB by the proteins, was determined in plasmid using the plasmid-nicking assay and in cells by either conventional pulsed field gel electrophoresis or a hybridization assay, in which a 3 Mb restriction fragment of the X chromosome is used as a radioactive labeled probe. Enzyme concentrations (30–60 ng/µg DNA) were optimized to minimize visualization of background levels of endogenous DNA damage and DSB produced by non-specific cutting by Fpg and Nth in cellular DNA. 60Co γ- radiation produces a 1.8-fold increase in the yields of both types of enzyme sensitive sites, visualized as DSB compared with that of prompt DSB in plasmid DNA. In mammalian cells, the increase in yields of clustered DNA damage containing either Fpg or Nth sensitive sites compared with that of prompt DSB is 1.4–2.0- and 1.8-fold, respectively. Therefore, clustered DNA damage is induced in cells by sparsely ionizing radiation and their yield is significantly greater than that of prompt DSB.  相似文献   

12.
Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron.  相似文献   

13.
Epidermal human keratinocytes are exposed to a wide range of environmental genotoxic insults, including the UV component of solar radiation. Epidermal homeostasis in response to cellular or tissue damage is maintained by a population of keratinocyte stem cells (KSC) that reside in the basal layer of the epithelium. Using cell sorting based on cell-surface markers, we have identified a novel α6 integrinhigh+/CD44+ sub-population of basal keratinocytes. These α6 integrinhigh+/CD44+ keratinocytes have both high proliferative potential, form colonies in culture that have characteristics of holoclones and have a unique pattern of resistance to apoptosis induced by UVB radiation or by agents that induce single- or double strand DNA breaks. Resistance to UVB induced apoptosis in the α6 integrinhigh+/CD44+ cells involved increased expression of TAp63 and was overcome by PI-3 kinase inhibition. In marked contrast, the α6 integrinhigh+/CD44+ cells were sensitive to apoptosis induced by the cross-linking agent cisplatin, and imatinib inhibition of c-Abl blocked the ability of cisplatin to kill α6 integrinhigh+/CD44+ cells. Our findings reveal a population of basal keratinocytes with long-term proliferative properties that display specific patterns of apoptotic resistance that is dependent upon the genotoxic stimulus, and provide insights into how these cells can be targeted with chemotherapeutic agents.  相似文献   

14.
Previously we reported that yeast and Chinese hamster V79 cells cultured under reduced levels of background environmental ionizing radiation show enhanced susceptibility to damage caused by acute doses of genotoxic agents. Reduction of environmental radiation dose rate was achieved by setting up an underground laboratory at Laboratori Nazionali del Gran Sasso, central Italy. We now report on the extension of our studies to a human cell line. Human lymphoblastoid TK6 cells were maintained under identical in vitro culture conditions for six continuous months, at different environmental ionizing radiation levels. Compared to “reference” environmental radiation conditions, we found that cells cultured in the underground laboratories were more sensitive to acute exposures to radiation, as measured both at the level of DNA damage and oxidative metabolism. Our results are compatible with the hypothesis that ultra-low dose rate ionizing radiation, i.e. environmental radiation, may act as a conditioning agent in the radiation-induced adaptive response.  相似文献   

15.
Kaempferol 3-O-β-isorhamninoside (K3O-ir) and rhamnocitrin 3-O-β-isorhamninoside (R3O-ir), were isolated from Rhamnus alaternus L leaves. The genotoxic and antigenotoxic properties of these compounds were investigated by assessing the induction and inhibition of the genotoxicity induced by the direct-acting mutagen, hydrogen peroxide (H2O2), using the “comet assay.” K3O-ir and R3O-ir exhibited a preventive effect against H2O2 induced DNA damages in human lymphoblastoid TK6 cells and its derivative the p53 deficient cell line NH32.These two flavonoids, also investigated for their antioxidant capacities, using different antioxidant tests, such as: Cuprac, Frap and reducing power assays, revealed significant activity through their capacities to transfer electrons.  相似文献   

16.
Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.  相似文献   

17.
It is believed that non-ionizing electromagnetic radiation (EMR) and low-level hydrogen peroxide (H2O2) may change nonspecific resistance and modify DNA damage caused by ionizing radiation. To check this assumption, the combined effects of extremely high-frequency EMR (EHF EMR) and X-rays on induction of DNA damage in mouse whole blood leukocytes were studied. The cells were exposed to X-rays with or without preliminary treatment with EHF EMR or low-level H2O2. With the use of enhanced chemiluminescence, it was shown for the first time that pulse-modulated EHF EMR (42.2 GHz, incident power density of 0.1 mW/cm2, exposure duration of 20 min, modulation frequency of 1 Hz) induced H2O2 at a concentration of 4.6 ± 0.3 nM L?1 in physiological saline. With the use of an alkaline comet assay, it was found that the exposure of cells to the pulse-modulated EHF EMR, 25 min prior to treatment with X-rays at a dose of 4 Gy reduced the level of ionizing radiation-induced DNA damage. Continuous EHF EMR was inefficient. In turn, it was shown that low-level H2O2 (30–500 nM L?1) protected the cells against X-irradiation. Thus, the mechanisms of radiation protective effect of EHF EMR are connected with the induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated EHF EMR.  相似文献   

18.

Background  

DNA double-strand breaks (DSBs) can occur in response to ionizing radiation (IR), radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ). Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku.  相似文献   

19.
Exposure of cells to ionizing radiation leads to formation of reactive oxygen species, which are associated with radiation-induced cytotoxicity. Therefore, compounds that scavenge reactive oxygen species may confer radioprotective effects. Superoxide dismutase (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of manganese(III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP), a cell-permeable SOD mimetic, on radiation-dependent toxicity. We investigated the protective role of MnTMPyP against ionizing radiation in U937 cells and mice. On exposure to ionizing radiation, there was a distinct difference between control cells and cells pretreated with MnTMPyP with respect to viability, cellular redox status, and oxidative damage to cells. Lipid peroxidation, oxidative DNA damage, and protein oxidation were significantly lower in the cells treated with MnTMPyP when the cells were exposed to ionizing radiation. The [GSSG]/[GSH + GSSG] ratio and the generation of intracellular reactive oxygen species were higher and the [NADPH]/[NADP+ + NADPH] ratio was lower in control cells compared with MnTMPyP-treated cells. Ionizing radiation-induced mitochondrial damage, as reflected by the altered mitochondrial permeability transition, increase in accumulation of reactive oxygen species, reduction of ATP production, and morphological change, was significantly higher in control cells than in MnTMPyP-treated cells. MnTMPyP administration for 14 days at a daily dosage of 5 mg/kg provided substantial protection against killing and oxidative damage in mice exposed to whole-body irradiation. These data indicate that MnTMPyP may have great application potential as a new class of in vivo, non-sulfur-containing radiation protectors.  相似文献   

20.
In recent years extremely low-frequency magnetic fields (ELF-EMF) have become widely used in human activities, leading to an increased chance of exposure to ELF-EMF. There are few reports on in vivo mammalian genotoxic effects using micronucleus (MN) assays, which generally have been used as a short-term screening system. We analyzed the possible genotoxic effect induced by long-term exposure (7, 14, 21, 28?d) of a 50?Hz ELM-MF to mice by measuring the increase in frequency of micronucleated polychromatic erythrocyte in their bone marrow (MNPCEs) and we compared it with that induced by 50?cGy of X-rays. Subsequently, we tried to reduce this chromosomal damage by administering four antioxidants substances with radioprotective capacities: dimethyl sulfoxide (DMSO), 6-n-propyl-2-thiouracil (PTU), grape-procyanidins (P) and citrus flavonoids extract (CE). The increase in micronucleated cells was higher in both physical treatments (Control?p?p?>?0.001)); however, the antioxidant substances only showed a genoprotective capacity against the damage induced by ionizing radiation (Ci?>?PTU?=?DMSO (p?P?=?CE (p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号