首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sendai virus envelopes have been a useful tool in studying the mechanism of membrane-membrane fusion and have served as a vehicle for introducing foreign molecules (e.g., membrane proteins) into recipient cells. Reconstituted Sendai virus envelopes are routinely obtained following solubilization of virus particles with Triton X-100. This detergent has a low critical micellar concentration which precludes it from being the best detergent of choice in reconstitution studies. Nevertheless, it has remained in use since other detergents such as sodium deoxycholate and sodium cholate rendered the resultant vesicles inactive. Triton X-100 may be suboptimal for studies of some proteins that need be coreconstituted with the viral envelopes. Thus, alternative advantageous detergents, which retain the envelope fusogenic activity, have been sought. In this study we show that the synthetic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps) effectively solubilizes the Sendai virions, and that the vesicles formed by simple reconstitution protocols appear structurally and biochemically similar to those obtained with Triton X-100. The resultant vesicles retain functional integrity as assessed in both fusion and hemolysis assays. This protocol seems to be useful in sendai envelope-mediated reimplantation of Fc epsilon receptors into the plasma membranes of rat basophilic leukemia cells.  相似文献   

2.
The cross-linking reagents succinimidyl-4-(p-maleimidophenyl)-butyrate and N-succinimidyl-3-(2-pyridyldithio)-propionate were used to covalently attach antibodies against human erythrocytes to the thiol-containing paraffin, dodecanethiol. The complex formed, dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody was inserted into the membranes of reconstituted Sendai virus envelopes. This was achieved by addition of the dodecanethiol-maleimidophenylbutyrate-antibody to a detergent solution (Triton X-100) containing the viral envelope phospholipids and glycoproteins. Removal of the detergent led to the formation of vesicles containing the viral glycoprotein and the dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody complexes within the same membrane. Reconstituted Sendai virus envelope-bearing antibodies against human erythrocytes were able to fuse with human erythrocytes (as was reflected by reconstituted Sendai virus envelope-induced hemolysis) from which the natural virus receptors were removed by treatment with neuraminidase. Thus, it appears that anti-human erythrocyte antibodies could substitute for the viral binding protein (hemagglutinin/neuraminidase glycoprotein) in mediating functional binding of the virus particles to the cell plasma membranes. Furthermore, from the results of the present work, it may be inferred that in addition to being the viral-binding protein, hemagglutinin/neuraminidase glycoprotein actively participates in the process of virus-cell fusion.  相似文献   

3.
A new way for reconstituting highly fusogenic Sendai virus envelopes is described. As opposed to previously described methods, in the present one the detergent (Triton X-100) is removed by direct addition of SM-2 Bio-beads to the detergent solubilized mixture of the viral phospholipids and glycoproteins, thus avoiding the long dialysis step. The vesicles obtained in the present work resemble, in their composition, size and features, envelopes of intact Sendai virus particles. The present method allows the enclosure of low and high molecular weight material within the reconstituted viral envelopes.  相似文献   

4.
A new way for reconstituting highly fusogenic Sendai virus envelopes is described. As opposed to previously described methods, in the present one the detergent (Triton X-100) is removed by direct addition of SM-2 Bio-beads to the detergent solubilized mixture of the viral phospholipids and glycoproteins, thus avoiding the long dialysis step. The vesicles obtained in the present work resemble, in their composition, size and features, envelopes of intact Sendai virus particles. The present method allows the enclosure of low and high molecular weight material within the reconstituted viral envelopes.  相似文献   

5.
Sendai virus envelopes can be solubilized by non-ionic detergents such as Triton X-100. Removal of the detergent from a supernatant containing the solubilized viral envelope glycoproteins results in the formation of reconstituted fusogenic viral envelopes. When SV40-DNA is added to the reconstitution system, it is trapped within the viral envelope. Incubation of SV40-DNA-loaded Sendai virus envelopes with permissive cells (CV1 and TC7 cells) resulted in fusion-mediated injection of the trapped DNA, as was demonstrated by the ability of the injected cells to synthesize SV40-T-antigen. Quantitative estimation revealed that up to 20% of the injected cells were able to synthesize T-antigen. Loaded viral envelopes were able to inject SV40-DNA and to promote synthesis of T-antigen also in cells which are resistant to infection by intact SV40 viruses, such as F1' 1-4 cells. In addition, it is shown that reconstituted envelopes of Sendai virus are able to transfer membrane fragments from SV40 receptor-positive into SV40 receptor-negative cells, such as F1' 1-4 cells. After implantation of SV40 receptors, the F1' 1-4 cells became susceptible to infection by intact SV40 viruses.  相似文献   

6.
We have demonstrated that Triton X-100 is always present in F-protein vesicles at concentrations that can provoke cell lysis. In order to avoid any misinterpretation of the fusogenic capacity of this protein, we solubilized the Sendai virus using octyl glucoside, which can be totally removed from the F protein preparation in less than 16 h by dialysis in the presence of absorbent beads. F-glycoprotein preparations preserved their ability to lyse erythrocytes in the presence of lectins and to induce cell-vesicle fusion as demonstrated by ESR studies. These vesicles were characterized by electron microscopy and SDS-polyacrylamide gel electrophoresis. Lipid analysis of these preparations by thin-layer chromatography indicated that they had the same proportion of lipids as virus envelopes, with slight variations in the sphingomyelin content and the cholesterol/phospholipid molar ratio. F-protein vesicles of different sizes can be obtained by adding exogenous lipids before detergent removal. The hemolytic activity of the vesicles was retained over a large range of lipid concentrations. We conclude that F-protein vesicles prepared with octyl glucoside are convenient tools for studying the fusogenic mechanism of this protein and improving the fusion process between liposomes and cells.  相似文献   

7.
Sendai virus envelopes were reconstituted after solubilization of intact virions with either Triton X-100 or octylglucoside. Envelopes obtained from Triton X-100, but not from octylglucoside solubilized virions, were hemolytic and promoted cell-cell fusion. Fluorescence dequenching studies [using N-4-nitrobenzo-2-oxa-1,3-diazole phosphatidylethanolamine-bearing viral envelopes] revealed that both preparations fused with negatively charged phospholipids. Fusion with phosphatidylcholine (PC)/cholesterol (chol) liposomes was promoted only by the hemolytic viral envelopes. Fluorescence dequenching studies, using intact virions bearing octadecylrhodamine B chloride, revealed that intact virions fused with PC/chol as well as with negatively charged phospholipids. Only fusion with PC/chol liposomes was inhibited by phenylmethylsulfonyl fluoride and dithiothreitol, reagents which are known to block the viral ability to fuse with biological membranes.  相似文献   

8.
Functional reconstitution of influenza virus envelopes.   总被引:6,自引:0,他引:6       下载免费PDF全文
We have examined several procedures for the reconstitution of influenza virus envelopes, based on detergent removal from solubilized viral membranes. With octylglucoside, no functionally active virosomes are formed, irrespective of the rate of detergent removal: in the final preparation the viral spike proteins appear predominantly as rosettes. Protein incorporation in reconstituted vesicles is improved when a method based on reverse-phase evaporation of octylglucoside-solubilized viral membranes in an ether/water system is employed. However, the resulting vesicles do not fuse with biological membranes, but exhibit only a non-physiological fusion reaction with negatively charged liposomes. Functional reconstitution of viral envelopes is achieved after solubilization with octaethyleneglycol mono(n-dodecyl)ether (C12E8), and subsequent detergent removal with Bio-Beads SM-2. The spike protein molecules are quantitatively incorporated in a single population of virosomes of uniform buoyant density and appear on both sides of the membrane. The virosomes display hemagglutination activity and a strictly pH-dependent hemolytic activity. The virosomes fuse with erythrocyte ghosts, as revealed by a fluorescence resonance energy transfer assay. The rate and the pH dependence of fusion are essentially the same as those of the intact virus. The virosomes also fuse with cultured cells, either at the level of the endosomal membrane or directly with the cellular plasma membrane upon a brief exposure to low pH.  相似文献   

9.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

10.
The envelope glycoprotein (G protein) of vesicular stomatitis virus is a transmembrane protein that exists as a trimer of identical subunits in the virus envelope. We have examined the effect of modifying the environment surrounding the membrane-spanning sequence on the association of G protein subunits using resonance energy transfer. G protein subunits were labeled with either fluorescein isothiocyanate or rhodamine isothiocyanate. When the labeled G proteins were mixed in the presence of the detergent octyl glucoside, mixed trimers containing both fluorescent labels were formed as a result of subunit exchange, as shown by resonance energy transfer between the two labels. In contrast when fluorescein- and rhodamine-labeled G proteins were mixed in the presence of Triton X-100, no resonance energy transfer was observed, indicating that subunit exchange did not occur in Triton X-100 micelles. However, if labeled G proteins were first mixed in the presence of octyl glucoside, energy transfer persisted after dilution with buffer containing Triton X-100. This result indicates that the G protein subunits remained associated in Triton X-100 micelles and that the failure to undergo subunit exchange was due to lack of dissociation of G protein subunits. Chemical cross-linking experiments confirmed that G protein was trimeric in the presence of Triton X-100. The efficiency of resonance energy transfer between labeled G protein was higher when G proteins were incorporated into dimyristoylphosphatidylcholine liposomes compared to detergent micelles. This result indicates that the labels exist in a more favorable environment for energy transfer in membranes than in detergent micelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Reconstituted vesicular stomatitis virus (VSV) envelopes were formed by solubilization of the viral envelope with Triton X-100 followed by removal of detergent by direct addition of SM2 biobeads. We provide direct demonstration of fusion of reconstituted VSV with cells using fluorescent lipid and aqueous probes incorporated into the VSV virosomes during reconstitution. We show a direct comparison of the kinetics and pH profile of fusion with cells between reconstituted VSV and fluorescently labeled intact virus. With this preparation it is now possible to gain additional information about the role of cooperativity in viral protein-mediated fusion, and to permit construction of efficient vehicles for delivery of drugs and other materials into cells.  相似文献   

12.
The fluorescent probes, N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine and lissamine-rhodamine-B-sulfonylphosphatidylethanolamine, were inserted at the appropriate surface density into membranes of reconstituted Sendai virus envelopes, thus allowing transfer of energy between the fluorescent probes. In addition, only the fluorescent molecule N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine was inserted into the viral envelopes, resulting in self-quenching. Incubation of fluorescent, reconstituted Sendai virus envelopes with human erythrocyte ghosts resulted in either reduction in the efficiency of energy transfer or in fluorescence dequenching. No reduction in the efficiency of energy transfer or fluorescence dequenching was observed when fluorescent, reconstituted Sendai virus envelopes were incubated with glutaraldehyde-fixed or desialized human erythrocyte ghosts. Similarly, no change in the fluorescence value was observed when nonfusogenic, reconstituted Sendai virus envelopes were incubated with human erythrocyte ghosts. These results clearly show that reduction in the efficiency of energy transfer or dequenching is due to virus-membrane fusion and not to lipid-lipid exchange. Incubation of reconstituted Sendai virus envelopes, carrying inserted N-4-nitrobenzo-2-oxa-1,3-diazolephosphatidylethanolamine, with cultured cells also resulted in a significant and measurable dequenching. However, incubation of nonfusogenic, fluorescent reconstituted Sendai virus envelopes with hepatoma tissue culture cells also resulted in fluorescent dequenching, the degree of which was about 50% of that observed with fusogenic, fluorescent reconstituted viral envelopes. It is therefore possible that, in addition to virus-membrane fusion, endocytosis of fluorescent viral envelopes results in fluorescence dequenching as well.  相似文献   

13.
Reconstituted Sendai virus envelopes containing both the fusion (F) protein and the hemagglutinin-neuraminidase (HN) (F,HN-virosomes) or only the F protein (F-virosomes) were prepared by solubilization of the intact virus with Triton X-100 followed by its removal by using SM2 Bio-Beads. Viral envelopes containing HN whose disulfide bonds were irreversibly reduced (HNred) were also prepared by treating the envelopes with dithiothreitol followed by dialysis (F,HNred-virosomes). Both F-virosomes and F,HNred-virosomes induced hemolysis of erythrocytes in the presence of wheat germ agglutinin, but the rates and extents were markedly lower than those for hemolysis induced by F,HN-virosomes. Using an assay based on the relief of self-quenching of a lipid probe incorporated in the Sendai virus envelopes, we demonstrate the fusion of both F,HN-virosomes and F-virosomes with cultured HepG2 cells containing the asialoglycoprotein receptor, which binds to a terminal galactose moiety of F. By desialylating the HepG2 cells, the entry mediated by HN-terminal sialic acid receptor interactions was bypassed. We show that both F-virosomes and F,HN-virosomes fuse with desialylated HepG2 cells, although the rate was two- to threefold higher if HN was included in the viral envelope. We also observed enhancement of fusion rates when both F and HN envelope proteins were attached to their specific receptors.  相似文献   

14.
O Nussbaum  M Lapidot    A Loyter 《Journal of virology》1987,61(7):2245-2252
Reconstituted influenza virus envelopes were obtained following solubilization of intact virions with Triton X-100. Quantitative determination revealed that the hemolytic and fusogenic activities of the envelopes prepared by the present method were close or identical to those expressed by intact virions. Hemolysis as well as virus-membrane fusion occurred only at low pH values, while both activities were negligible at neutral pH values. Fusion of intact virions as well as reconstituted envelopes with erythrocyte membranes--and also with liposomes--was determined by the use of fluorescently labeled viral envelopes and fluorescence dequenching measurements. Fusion with liposomes did not require the presence of specific virus receptors, namely sialoglycolipids. Under hypotonic conditions, influenza virions or their reconstituted envelopes were able to fuse with erythrocyte membranes from which virus receptors had been removed by treatment with neuraminidase and pronase. Inactivated intact virions or reconstituted envelopes, namely, envelopes treated with hydroxylamine or glutaraldehyde or incubated at low pH or 85 degrees C, neither caused hemolysis nor possessed fusogenic activity. Fluorescence dequenching measurements showed that only fusion with liposomes composed of neutral phospholipids and containing cholesterol reflected the viral fusogenic activity needed for infection.  相似文献   

15.
A method has been developed for identifying the step in a detergent-mediated reconstitution procedure at which an integral membrane protein can be associated with phospholipids to give functional proteoliposomes. Large liposomes prepared by reverse-phase evaporation were treated with various amounts of the detergents Triton X-100, octyl glucoside, or sodium cholate as described in the preceding paper [Paternostre, M.-T., Roux, M., & Rigaud, J. L. (1988) Biochemistry (preceding paper in this issue)]. At each step of the solubilization process, we added bacteriorhodopsin, the light-driven proton pump from Halobacterium halobium. The protein-phospholipid detergent mixtures were then subjected to SM2 Bio-Beads treatments to remove the detergent, and the resulting vesicles were analyzed with respect to protein insertion and orientation in the membrane by freeze-fracture electron microscopy, sucrose density gradients, and proton pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With sodium cholate, proteoliposomes were formed only from ternary phospholipid-protein-detergent micelles. With octyl glucoside, besides proteoliposome formation from ternary mixed micelles, direct incorporation of bacteriorhodopsin into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes with optimal proton pumping activity. With Triton X-100, protein insertion into destabilized liposomes was also observed but involved a transfer of the protein initially present in phospholipid-Triton X-100-protein micelles into Triton X-100 saturated liposomes. Our results further demonstrated that protein orientation in the resulting proteoliposomes was critically dependent upon the mechanism by which the protein was incorporated.  相似文献   

16.
Octyl beta-D-glucoside was synthetized from alpha-acetobromoglucose with an improved method yielding a very pure product with a sharp melting point (108-109 degrees C) and free of intermediate products as judged by IR and NMR spectra. The yield of the synthesis is 66% when referred to alpha-acetobromoglucose. The potency of this compound as a detergent on hog kidney brush border membranes was compared to the action of Triton X-100. Octyl glucoside preferentially extracts aminopeptidase M and gamma-glutamyltranspeptidase in a concentration-dependent manner. The more deeply imbedded membrane enzyme, alkaline phosphatase, was relatively resistent to the action of octyl glucoside. In contrast, Triton X-100 extracted all membrane proteins to about the same extent. Additionally it was found that octyl glucoside can be removed from membrane extracts by Biobead SM 2. The capacity of the beads is about 170 mg detergent/g of dry Biobead SM 2. Thus octyl glucoside seems to be a useful tool for solubilization and purification of brush border membranes proteins.  相似文献   

17.
A method for membrane reconstitution from cholate-solubilized microsomal proteins and lipids by a removal of the detergent on a column with charcoal has been developed. A comparative study showed that the membranes reconstituted by a dialysis or absorption do not differ from each other in terms of membrane proteins incorporation into lipid vesicles and cytochrome P-450 reconversion into cytochrome P-450. A possibility of biomembrane reconstitution from membrane proteins and lipids solubilized by a non-ionic detergent Triton X-100 was shown. A removal of the detergent results in a formation of membranes, which are chemically close to the original ones but ultrastructurally very different from the latter. On the other hand, absorption or dialysis of cholate-solubilized proteins and lipids results in reconstituted membranes with asymmetrically arranged intramembrane particles located on the hydrophobic surfaces of the membrane halves. The number and size of these particles are similar to those of the original microsomal membranes.  相似文献   

18.
Y I Henis  O Gutman 《Biochemistry》1987,26(3):812-819
We have recently employed fluorescence photobleaching recovery (FPR) to demonstrate that the envelope glycoproteins of Sendai virions become laterally mobile on the surface of human erythrocytes following fusion [Henis, Y. I., Gutman, O., & Loyter, A. (1985) Exp. Cell Res. 160, 514-526]. In order to investigate whether this lateral mobilization is involved in the mechanism of virally mediated cell-cell fusion, or is merely a result of viral envelope-cell fusion, we have now performed FPR studies on erythrocytes fused with reconstituted Sendai virus envelopes (RSVE). These RSVE, which were prepared by solubilization of Sendai virions with Triton X-100 followed by removal of the detergent through adsorption to SM-2 Bio-beads, fused with human erythrocytes as efficiently as native virions but induced cell-cell fusion to a much lower degree. The fraction of the viral envelope glycoproteins that became laterally mobile in the erythrocyte membrane following fusion was markedly lower in the case of RSVE than in the case of native virions. The lower cell-cell fusion activity of the RSVE does not appear to be due to inactivation of the viral fusion protein, since the envelope-cell fusion and hemolytic activities of the RSVE were similar to those of native virions. Moreover, fusion with RSVE or with native virions resulted in the incorporation of rather similar amounts of viral glycoproteins into the cell membrane. Since the reduced fraction of laterally mobile viral glycoproteins correlates with the lower cell-cell fusion activity of the RSVE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Chlorophyll a and chlorophyll b have been inserted into reconstituted envelopes of Sendai virus particles. Fluorescence measurements indicated a high efficiency of energy transfer between the two chlorophyll molecules due to their close proximity in the viral envelope. Fusion of reconstituted, pigmented virus envelopes with various biological cell membranes at 37 degrees C resulted in a significant decrease in the yield of energy transfer. Reduction in the efficiency of energy transfer was temperature and time dependent, and was also dependent upon the ratio between the reconstituted Sendai virus envelopes (donor) and recipient cells (acceptor). No reduction in the efficiency of energy transfer was observed when non-fusogenic, reconstituted viral envelopes were incubated with cell membranes.  相似文献   

20.
Sendal virus envelopes (SVE) were isolated from Sendal virus particles by Triton X-100 solubilization and ultracentrifugation. The envelopes were reconstituted in the presence of the fluorescent dye calcein by gradual removal of the detergent with Bio-beads SM-2. The internal volume of reconstituted Sendal virus envelopes (RSVE) was determined by quenching the fluorescence of calcein with cobalt (II) ions. The internal volume of RSVE was found to be proportional to the initial SVE protein concentration in the recon-stitution mixture, reaching about 18% of the total volume with 5.6 mg of SVE protein per ml. When radiolabelled cloned Epstein-Barr virus DNA fragment was included in the reconstitution mixture, the proportion of DNA associated with the vesicles much exceeded the trapping volume, indicating adsorption of DNA to the internal surface of RSVE. These deter-minations will allow optimization of the use of RSVE as gene-transfer vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号