首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
We studied the effects of left lower lobe (LLL) alveolar hypoxia on pulmonary gas exchange in anesthetized dogs using the multiple inert gas elimination technique (MIGET). The left upper lobe was removed, and a bronchial divider was placed. The right lung (RL) was continuously ventilated with 100% O2, and the LLL was ventilated with either 100% O2 (hyperoxia) or a hypoxic gas mixture (hypoxia). Whole lung and individual LLL and RL ventilation-perfusion (VA/Q) distributions were determined. LLL hypoxia reduced LLL blood flow and increased the perfusion-related indexes of VA/Q heterogeneity, such as the log standard deviation of the perfusion distribution (log SDQ), the retention component of the arterial-alveolar difference area [R(a-A)D], and the retention dispersion index (DISPR*) of the LLL. LLL hypoxia increased blood flow to the RL and reduced the VA/Q heterogeneity of the RL, indicated by significant reductions in log SDQ, R(a-A)D, and DISPR*. In contrast, LLL hypoxia had little effect on gas exchange of the lung when evaluated as a whole. We conclude that flow diversion induced by regional alveolar hypoxia preserves matching of ventilation to perfusion in the whole lung by increasing gas exchange heterogeneity of the hypoxic region and reducing heterogeneity in the normoxic lung.  相似文献   

3.
The multiple inert gas elimination technique (MIGET) was applied to blood-free perfused isolated rabbit lungs. Commonly accepted criteria for reliability of the method were found to be fulfilled in this model. Ventilation-perfusion (VA/Q) distributions in isolated control lungs corresponded to those repeatedly detected under physiological conditions. In particular, a narrow unimodal dispersion of perfusate flow was observed: perfusion of low-VA/Q areas ranged below 1% and shunt flow approximately 2-3%; perfusion of high-VA/Q regions was not detected. Gas flow was characterized by narrow dispersion in the midrange-VA/Q areas. Application of a low level of PEEP (1 cmH2O) reduced shunt flow to less than 1%, and low-VA/Q areas were no longer noted. By using this PEEP-level, stable gas exchange conditions were maintained for greater than 5 h of extracorporeal perfusion. Graded embolization with small air bubbles caused a typical rightward shift (to higher VA/Q ratios) of mean ventilation, associated with the appearance of high-VA/Q regions and an increase in dead space ventilation. Mean perfusion was shifted leftward, and shunt flow was approximately doubled. Whole lung lavage with saline for washout of surfactant evoked a progressive manifold increase in shunt flow, accompanied by a moderate rise of perfusate flow to low-VA/Q areas. We conclude that the MIGET can be applied to isolated blood-free perfused rabbit lungs for assessment of gas exchange and that typical patterns of VA/Q mismatch are reproduced in this model.  相似文献   

4.
Changes in the spatial distribution of perfusion during acute lung injury and their impact on gas exchange are poorly understood. We tested whether endotoxemia caused topographical differences in perfusion and whether these differences caused meaningful changes in regional ventilation-to-perfusion ratios and gas exchange. Regional ventilation and perfusion were measured in anesthetized, mechanically ventilated pigs in the prone position before and during endotoxemia with the use of aerosolized and intravenous fluorescent microspheres. On average, relative perfusion halved in ventral and cranial lung regions, doubled in caudal lung regions, and increased 1.5-fold in dorsal lung regions during endotoxemia. In contrast, there were no topographical differences in perfusion before endotoxemia and no topographical differences in ventilation at any time point. Consequently, endotoxemia increased regional ventilation-to-perfusion ratios in the caudal-to-cranial and dorsal-to-ventral directions, resulting in end-capillary PO2 values that were significantly lower in dorsal-caudal than ventral-cranial regions. We conclude that there are topographical differences in the pulmonary vascular response to endotoxin that may have important consequences for gas exchange in acute lung injury.  相似文献   

5.
The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.  相似文献   

6.
Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.  相似文献   

7.
Xe-enhanced computed tomography (CT; Xe-CT) is a method for the noninvasive measurement of regional pulmonary ventilation in intact subjects, determined from the washin and washout rates of the radiodense, nonradioactive gas Xe, as measured in serial CT scans. We used the Xe-CT ventilation method, along with other quantitative CT measurements, to investigate the distribution of regional lung ventilation and air content in healthy, anesthetized, mechanically ventilated dogs in the prone and supine postures. Vertical gradients in regional ventilation and air content were measured in five mongrel dogs in both prone and supine postures at four axial lung locations. In the supine position, ventilation increased with dependent location, with a mean slope of 7.3%/cm lung height, whereas no ventilation gradients were found at any location in the prone position. These results agree quantitatively with other published studies. In addition, six different animals were studied (3 supine, 3 prone) to examine the longitudinal distribution of ventilation and air content. The prone lungs were more uniformly inflated compared with the supine, which were less well expanded at the base than apex. Ventilation index, a measure of regional ventilation relative to whole lung ventilation, increased steeply from apex to base in the supine animals, whereas it was again more uniform in the prone condition. We conclude that the Xe-CT method provides a reasonable, quantitative measurement of regional ventilation and promises to be a valuable tool for the noninvasive determination of regional lung function.  相似文献   

8.
In external gas exchange of vertebrates, behavior of the respiratory gases CO2 and O2 can in many cases adequately be explained by the different physico-chemical properties of the gases, including solubility, chemical combination in blood and tissue, and diffusivity. In particular, the differences in behavior between CO2 and O2 are often of particular relevance. This is demonstrated on a number of examples of gas exchange mechanisms in vertebrates, including (1) exchange ratio after changes in ventilation, (2) local variations of pulmonary ventilation/perfusion ratio, (3) absorption of gas from gas pockets, (4) water vs. air breathing, (5) multimodal breathing, (6) skin breathing, (7) gas exchange of avian eggs, (8) anomalous gas/blood CO2 equilibration, (9) blood/gas CO2 equilibration in avian lungs, (10) pulmonary diffusing capacity, (11) blood/water CO2 equilibration in fish gills, (12) deposition of gas into fish swim bladder.  相似文献   

9.
High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation has fractal characteristics similar to blood flow. We measured regional ventilation and perfusion with aerosolized and injected fluorescent microspheres in six anesthetized, mechanically ventilated pigs in both prone and supine postures. Adjacent regions were clustered into progressively larger groups. Coefficients of variation were calculated for each cluster size to determine fractal dimensions. At the smallest size lung piece, local ventilation and perfusion are highly correlated, with no significant difference between ventilation and perfusion heterogeneity. On average, the fractal dimension of ventilation is 1.16 in the prone posture and 1. 09 in the supine posture. Ventilation has fractal properties similar to perfusion. Efficient gas exchange is preserved, despite ventilation and perfusion heterogeneity, through close correlation. One potential explanation is the similar geometry of bronchial and vascular structures.  相似文献   

10.
Ten anesthetized normal dogs were each given two methacholine inhalational challenges to produce large amounts of low ventilation-perfusion (VA/Q) regions but little shunt. After one challenge, high-frequency ventilation (HFV) was applied, whereas after the other conventional mechanical ventilation (MV) was used, the order being randomized. Levels of both ventilatory modes were selected prior to challenge so as to result in similar and normal mean airway pressures and arterial PCO2 levels during control conditions. Gas exchange was assessed by both respiratory and multiple inert-gas transfer. Comparing the effect of HFV and MV, no statistically significant differences were found for lung resistance, pulmonary hemodynamic indices, arterial and mixed venous PO2, expired-arterial PO2 differences, or inert-gas data expressed as retention-excretion differences. The only variables that were different were mean airway pressure (2 cm higher during HFV, P less than 0.04) and arterial PCO2 (10 Torr higher during HFV, P less than 0.002). These results suggest that in this canine model of lung disease characterized by large amounts of low VA/Q regions, HFV is no more effective in delivering fresh gas to such regions than is MV.  相似文献   

11.
In 16 critically ill patients the arterial-alveolar N2 difference and data from the multiple inert gas elimination technique (MIGET) were compared in the evaluation of the contribution of low alveolar ventilation-perfusion ratio (VA/Q) lung regions (0.005 less than VA/Q less than 0.1) to venous admixture (Qva/QT). The arterial-alveolar N2 difference was determined using a manometric technique for the measurement of the arterial N2 partial pressure (PN2). We adopted a two-compartment model of the lung, one compartment having a VA/Q of approximately 1, the other being open, gas filled, unventilated (VA/Q = 0), and in equilibrium with the mixed venous blood. This theoretical single compartment represents all lung regions responsible for the arterial-alveolar N2 difference. The fractional blood flow to this compartment was calculated using an appropriate mixing equation (Q0/QT). There was a weak but significant relationship between Q0/QT and the perfusion fraction to lung regions with low VA/Q (0.005 less than VA/Q less than 0.1) (r = 0.542, P less than 0.05) and a close relationship between Q0/QT and the perfusion fraction to lung regions with VA/Q ratios less than 0.9 (r = 0.862, P less than 0.001) as obtained from MIGET. The difference Qva/QT-Q0/QT yielded a close estimation of the MIGET right-to-left shunt (Qs/QT) (r = 0.962, P less than 0.001). We conclude that the assessment of the arterial-alveolar N2 difference and Q0/QT does not yield a quantitative estimation of the contribution of pathologically low VA/Q areas to QVa/QT because these parameters reflect an unknown combination of pathological and normal (0.1 less than VA/Q less than 0.9) gas exchange units.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Although recent high-resolution studies demonstrate the importance of nongravitational determinants for both pulmonary blood flow and ventilation distributions, posture has a clear impact on whole lung gas exchange. Deterioration in arterial oxygenation with repositioning from prone to supine posture is caused by increased heterogeneity in the distribution of ventilation-to-perfusion ratios. This can result from increased heterogeneity in regional blood flow distribution, increased heterogeneity in regional ventilation distribution, decreased correlation between regional blood flow and ventilation, or some combination of the above (Wilson TA and Beck KC, J Appl Physiol 72: 2298-2304, 1992). We hypothesize that, although repositioning from prone to supine has relatively small effects on overall blood flow and ventilation distributions, regional changes are poorly correlated, resulting in regional ventilation-perfusion mismatch and reduction in alveolar oxygen tension. We report ventilation and perfusion distributions in seven anesthetized, mechanically ventilated pigs measured with aerosolized and injected microspheres. Total contributions of pulmonary structure and posture on ventilation and perfusion heterogeneities were quantified by using analysis of variance. Regional gradients of posture-mediated change in ventilation, perfusion, and calculated alveolar oxygen tension were examined in the caudocranial and ventrodorsal directions. We found that pulmonary structure was responsible for 74.0 +/- 4.7% of total ventilation heterogeneity and 63.3 +/- 4.2% of total blood flow heterogeneity. Posture-mediated redistribution was primarily oriented along the caudocranial axis for ventilation and along the ventrodorsal axis for blood flow. These mismatched changes reduced alveolar oxygen tension primarily in the dorsocaudal lung region.  相似文献   

13.
We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (VA) and regional blood flow (Q) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH(2)O PEEP. Q was measured by use of intravenously injected 15-microm fluorescent microspheres, and VA was measured by aerosolized 1-microm fluorescent microspheres. Fluorescence was analyzed in lung pieces approximately 1.7 cm(3) in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients of Q, VA, the ratio VA/Q, and regional PO(2) (Pr(O(2))) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q was observed in both lungs in conjunction with a reduced blood flow and Pr(O(2)) to the dependent left lung. Change from the LLD to the RLD or 10 cmH(2)O PEEP increased local VA/Q and Pr(O(2)) in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q and VA, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.  相似文献   

14.
Numerical methods for determining end-capillarygas contents for ventilation-to-perfusion ratios were first developedin the late 1960s. In the 1970s these methods were applied to validate distributions of ventilation-to-perfusion ratios measured by the multiple inert-gas-elimination technique. We combined numerical gasanalysis and fluorescent-microsphere measurements of ventilation andperfusion to predict gas exchange at a resolution of~2.0-cm3 lung volume in pigs.Oxygen, carbon dioxide, and inert gas exchange were calculated in551-845 compartments/animal before and after pulmonaryembolization with 780-µm beads. Whole lung gas exchange was estimatedfrom the perfusion- and ventilation-weighted end-capillary gascontents. Before lung injury, no significant difference existed betweenmicrosphere-estimated arterial PO2and PCO2 and measured values. Afterlung injury, the microsphere method predicted a decrease in arterialPO2 but consistently underestimatedits magnitude. Correlation between predicted and measured inert gasretentions was 0.99. Overestimation of low-solubility inert gasretentions suggests underestimation of areas with low ventilation-to-perfusion ratios by microspheres after lung injury. Regional deposition of aerosolized and injected microspheres is a validmethod for investigating regional gas exchange with high spatial resolution.

  相似文献   

15.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.  相似文献   

17.
Inspired CO2 causing changes from hypo- to normocapnia has previously been shown to improve arterial O2 tension (PaO2) and to reduce alveolar-arterial O2 difference. The effect of further increases in inspired CO2 to hypercarbic levels has not been studied in inflammatory lung disease. Three days after induction of sublobar Pseudomonas pneumonia, Suffolk sheep were anesthetized and ventilated with a fixed-volume ventilator. After 2.5 h, CO2 was added to the inspired gas to raise arterial CO2 tension (PaCO2) to 60-65 Torr. Four hours later the CO2 was withdrawn and ventilation continued for an additional 2 h. Constant minute ventilation and inspired O2 fraction were maintained. Regional lung perfusion was measured by injection of radioactive microspheres. With the administration of CO2, PaO2 increased significantly from 65.5 to 77.5 Torr as did alveolar O2 tension (from 109.7 to 120.0 Torr) with no significant change in alveolar-arterial O2 difference. There were no significant changes in cardiac output, shunt fraction, O2 uptake, O2 delivery, respiratory quotient, or distribution of regional lung perfusion. We conclude that the increases in alveolar O2 tension and PaO2 with the added CO2 resulted from improved alveolar ventilation.  相似文献   

18.
Respiratory sinus arrhythmia (RSA) may be associated with improved efficiency of pulmonary gas exchange by matching ventilation to perfusion within each respiratory cycle. Respiration rate, tidal volume, minute ventilation (.VE), exhaled carbon dioxide (.VCO(2)), oxygen consumption (.VO(2)), and heart rate were measured in 10 healthy human volunteers during paced breathing to test the hypothesis that RSA contributes to pulmonary gas exchange efficiency. Cross-spectral analysis of heart rate and respiration was computed to calculate RSA and the coherence and phase between these variables. Pulmonary gas exchange efficiency was measured as the average ventilatory equivalent of CO(2) (.VE/.VCO(2)) and O(2) (.VE/.VO(2)). Across subjects and paced breathing periods, RSA was significantly associated with CO(2) (partial r = -0.53, P = 0.002) and O(2) (partial r = -0.49, P = 0.005) exchange efficiency after controlling for the effects of age, respiration rate, tidal volume, and average heart rate. Phase between heart rate and respiration was significantly associated with CO(2) exchange efficiency (partial r = 0.40, P = 0.03). These results are consistent with previous studies and further support the theory that RSA may improve the efficiency of pulmonary gas exchange.  相似文献   

19.
Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurements of lung mechanics, pulmonary hemodynamics, and ventilation-perfusion (Va/Q) inequality using the multiple inert-gas elimination technique. LVRS improved arterial Po? (Pa(O?)) by a mean of 6 Torr (P = 0.04), with no significant effect on arterial Pco? (Pa(CO?)), but with great variability in both. Lung mechanical properties improved considerably more than did gas exchange. Post-LVRS Pa(O?) depended mostly on its pre-LVRS value, whereas improvement in Pa(O(2)) was explained mostly by improved Va/Q inequality, with lesser contributions from both increased ventilation and higher mixed venous Po(2). However, no index of lung mechanical properties correlated with Pa(O?). Conversely, post-LVRS Pa(CO?) bore no relationship to its pre-LVRS value, whereas changes in Pa(CO?) were tightly related (r2 = 0.96) to variables, reflecting decrease in static lung hyperinflation (intrinsic positive end-expiratory pressure and residual volume/total lung capacity) and increase in airflow potential (tidal volume and maximal inspiratory pressure), but not to Va/Q distribution changes. Individual gas exchange responses to LVRS vary greatly, but can be explained by changes in combinations of determining variables that are different for oxygen and carbon dioxide.  相似文献   

20.
In order to estimate optimum parameters for artificial ventilation of adult guinea pigs, the effect of four hours intermittent positive pressure ventilation (IPPV) was studied using different tidal volumes (VT), respiratory frequencies (f), and minute volumes (Ve). Total compliance was measured by placing the animal in a whole body plathysmograph, the arterial blood gases, pH and base excess by catheterizing the carotid artery. In Series I 9 guinea pigs were ventilated at parameters adapted to the spontaneous breathing pattern (VT = 2 ml, f = 70 breaths.min-1). This ventilatory pattern resulted in severe disorders in compliance, gas exchange, and acid-base balance. In Series II 3 different VT (2, 6, 10 ml) were studied by changing f so that Ve was kept constant. The results demonstrated a favourable effect of slow and deep ventilation upon lung mechanics and oxygenation. In Series III 3 different Ve (300, 250, 200 ml.min-1) were tested using a constant VT = 10 ml. Optimum parameters for artificial ventilation of adult guinea pigs were: VT = 10 ml and f = 20 breath--min-1 which resulted in stable compliance, good O2-saturation, normocapnia and normal acid-base balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号