首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wnt signalling induces maturation of Paneth cells in intestinal crypts   总被引:9,自引:0,他引:9  
Wnt signalling, which is transduced through beta-catenin/TCF4, maintains the undifferentiated state of intestinal crypt progenitor cells. Mutational activation of the pathway initiates the adenomacarcinoma sequence. Whereas all other differentiated epithelial cells migrate from the crypt onto the villus, Paneth cells home towards the source of Wnt signals--that is, the crypt bottom. Here, we show that expression of a Paneth gene programme is critically dependent on TCF4 in embryonic intestine. Moreover, conditional deletion of the Wnt receptor Frizzled-5 abrogates expression of these genes in Paneth cells in the adult intestine. Conversely, adenomas in Apc-mutant mice and colorectal cancers in humans inappropriately express these Paneth-cell genes. These observations imply that Wnt signals in the crypt can separately drive a stem-cell/progenitor gene programme and a Paneth-cell maturation programme. In intestinal cancer, both gene programmes are activated simultaneously.  相似文献   

3.
4.
5.
6.
Host defense of the small intestine is mediated, in part, by antimicrobial peptides, including alpha-defensins. In the small intestine, Paneth cells, specialized secretory epithelial cells located at the base of the crypt invaginations lining the intestinal wall, produce alpha-defensins. The alpha-defensins are cysteine-rich cationic peptides with antibiotic activity against a wide range of bacteria and other microbes. Studies of transgenic and knockout mice have supported a pivotal role of Paneth cell alpha-defensins in protection from bacterial pathogens. New data suggest that deficient expression of Paneth cell alpha-defensins may contribute to the pathophysiology of Crohn's disease, a chronic inflammatory bowel disease.  相似文献   

7.
Cloning parasitism genes encoding secretory proteins expressed in the esophageal gland cells is the key to understanding the molecular basis of nematode parasitism of plants. Suppression subtractive hybridization (SSH) with the microaspirated contents from Heterodera glycines esophageal gland cells and intestinal region was used to isolate genes expressed preferentially in the gland cells of parasitic stages. Twenty-three unique cDNA sequences from a SSH cDNA library were identified and hybridized to the genomic DNA of H. glycines in Southern blots. Full-length cDNAs of 21 clones were obtained by screening a gland-cell long-distance polymerase chain reaction cDNA library. Deduced proteins of 10 clones were preceded by a signal peptide for secretion, and PSORT II computer analysis predicted eight proteins as extracellular, one as nuclear, and one as plasmalemma localized. In situ hybridization showed that four of the predicted extracellular clones were expressed specifically in the dorsal gland cell, one in the subventral gland cells, and three in the intestine in H. glycines. The predicted nuclear clone and the plasmalemma-localized clone were expressed in the subventral gland cells and the dorsal gland cell, respectively. SSH is an efficient method for cloning putative parasitism genes encoding esophageal gland cell secretory proteins that may have a role in H. glycines parasitism of soybean.  相似文献   

8.
Gradients of gene expression are maintained along the proximal-distal axis of the mammalian small intestine despite a continuously regenerating epithelium. To study the molecular mechanisms responsible for this phenomenon, we utilized a subtractive hybridization strategy to isolate genes differentially expressed in the duodenum but not ileum. We isolated and sequenced 15 clones. The clones were fragments of genes encoding lipases, proteases, and an esterase. A novel clone was characterized and subsequently shown to encode syncollin, a secretory granule protein that binds to syntaxin in a calcium-sensitive manner. RT-PCR and S1 nuclease protection assay were used to clarify the 5'-end of syncollin. Syncollin was expressed in the rat pancreas, spleen, duodenum, and colon. In situ hybridization localized syncollin expression in the pancreas to acinar cells and in the duodenum to villus epithelial cells.  相似文献   

9.
In the small intestine, the progeny of stem cells migrate in precise patterns. Absorptive, enteroendocrine, and goblet cells migrate toward the villus while Paneth cells occupy the bottom of the crypts. We show here that beta-catenin and TCF inversely control the expression of the EphB2/EphB3 receptors and their ligand ephrin-B1 in colorectal cancer and along the crypt-villus axis. Disruption of EphB2 and EphB3 genes reveals that their gene products restrict cell intermingling and allocate cell populations within the intestinal epithelium. In EphB2/EphB3 null mice, the proliferative and differentiated populations intermingle. In adult EphB3(-/-) mice, Paneth cells do not follow their downward migratory path, but scatter along crypt and villus. We conclude that in the intestinal epithelium beta-catenin and TCF couple proliferation and differentiation to the sorting of cell populations through the EphB/ephrin-B system.  相似文献   

10.
11.
A post-embedding ultrastructural immunogold method was used to detect osteopontin in human intestinal biopsies with special emphasis on secretory and phagocytic organelles. Osteopontin immunoreactivity was localized to phagolysosomes of macrophages, fibroblasts, absorptive epithelial cells of the small intestine and Paneth cells. The mucigen secretory granules and Golgi structures of mucous epithelial cells of the small intestinal epithelium contained osteopontin, but secretory granules of numerous other cells, including Paneth cells, did not. Extracellular and phagocytosed Tropheryma whippelii within macrophage phagolysosomes also bound osteopontin. These localizations are supportive of a role for osteopontin in phagocytic and some secretory cell functions in human intestine  相似文献   

12.
13.
A post-embedding ultrastructural immunogold method was used to detect osteopontin in human intestinal biopsies with special emphasis on secretory and phagocytic organelles. Osteopontin immunoreactivity was localized to phagolysosomes of macrophages, fibroblasts, absorptive epithelial cells of the small intestine and Paneth cells. The mucigen secretory granules and Golgi structures of mucous epithelial cells of the small intestinal epithelium contained osteopontin, but secretory granules of numerous other cells, including Paneth cells, did not. Extracellular and phagocytosed Tropheryma whippelii within macrophage phagolysosomes also bound osteopontin. These localizations are supportive of a role for osteopontin in phagocytic and some secretory cell functions in human intestine This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
The Lkb1 tumour suppressor is a multitasking kinase participating in a range of physiological processes. We have determined the impact of Lkb1 deficiency on intestinal homeostasis, particularly focussing on secretory cell differentiation and development since we observe strong expression of Lkb1 in normal small intestine Paneth and goblet cells. We crossed mice bearing an Lkb1 allele flanked with LoxP sites with those carrying a Cyp1a1-specific inducible Cre recombinase. Lkb1 was efficiently deleted from the epithelial cells of the mouse intestine after intraperitoneal injection of the inducing agent β-naphthoflavone. Bi-allelic loss of Lkb1 led to the perturbed development of Paneth and goblet cell lineages. These changes were characterised by the lack of Delta ligand expression in Lkb1-deficient secretory cells and a significant increase in the levels of the downstream Notch signalling effector Hes5 but not Hes1. Our data show that Lkb1 is required for the normal differentiation of secretory cell lineages within the intestine, and that Lkb1 deficiency modulates Notch signalling modulation in post-mitotic cells.  相似文献   

15.
潘氏细胞是位于小肠腺底部的浆液性腺上皮细胞,其主要特征是细胞顶部有大量粗大的嗜酸性分泌颗粒,内含防御素、溶菌酶、sIgA等多种抗菌物质。表达于潘氏细胞的NOD2、Toll样受体9、肝癌-肠-胰腺/胰腺炎相关蛋白、RegⅢγ、肿瘤坏死因子仅、粒细胞-巨噬细胞集落刺激因子、白介素-17等也是免疫与炎症反应的重要成分。金属硫蛋白、富半胱氨酸肠蛋白、潘氏细胞锌结合蛋白等金属结合蛋白均分布于潘氏细胞,提示潘氏细胞参与金属代谢。潘氏细胞是构成肠黏膜屏障的重要细胞成分。NOD2单核苷酸多态性与克罗恩病有关。潘氏细胞化生常发生于胃、大肠的炎症与肿瘤病变,其病理意义有待于进一步研究。  相似文献   

16.
Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5(+) cells as frequently cycling stem cells, whereas Bmi1(+), mTert(+), Hopx(+) and Lrig1(+) cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5(+) stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation.  相似文献   

17.

Background

E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn''s disease.

Methods and Findings

To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen.

Conclusion

These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells.  相似文献   

18.
The complex interplay between symbiotic bacteria and host immunity plays a key role in shaping intestinal homeostasis and maintaining host health. Paneth cells, as one of the major producers of antimicrobial peptides in the intestine under steady-state conditions, play a vital role in regulating intestinal flora. Many studies on inflammatory bowel disease (IBD)-associated genes have put Paneth cells at the center of IBD pathogenesis. In this perspective, we focus on mechanistic studies of different cellular processes in Paneth cells that are regulated by various IBD-associated susceptibility genes, and we discuss the hypothesis that Paneth cells function as the central hub for sensing and regulating intestinal flora in the maintenance of intestinal homeostasis.  相似文献   

19.
20.
The Min (multiple intestinal neoplasia) strain of the laboratory mouse and its derivatives permit the fundamental study of factors that regulate the transition between normal and neoplastic growth. A gene of central importance in mediating these alternative patterns of growth is Apc, the mouse homologue of the human adenomatous polyposis coli (APC) gene. When adenomas form in the Min mouse, both copies of the Apc gene must be inactivated. One copy is mutated by the nonsense Apc allele carried in heterozygous form in this strain. The other copy can be silenced by any of several mechanisms. These range from loss of the homologue bearing the wild-type Apc allele; to interstitial deletions surrounding the wild-type allele; to intragenic mutation, including nonsense alleles; and finally, to a reduction in expression of the locus, perhaps owing to mutation in a regulatory locus. Each of these proposed mechanisms may constitute a two-hit genetic process as initially posited by Knudson; however, apparently the two hits could involve either a single locus or two loci. The kinetic order for the transition to adenoma may be still higher than two, if polyclonal adenomas require stronger interactions than passive fusion. The severity of the intestinal neoplastic phenotype of the Min mouse is strongly dependent upon loci other than Apc. One of these, Mom1, has now been rigorously identified at the molecular level as encoding an active resistance conferred by a secretory phospholipase. Mom1 acts locally within a crypt lineage, not systemically. Within the crypt lineage, however, its action seems to be non-autonomous: when tumours arise in Mom1 heterozygotes, the active resistance allele is maintained in the tumour (MOH or maintenance of heterozygosity). Indeed, the secretory phospholipase is synthesized by post-mitotic Paneth cells, not by the proliferative cells that presumably generate the tumour. An analysis of autonomy of modifier gene action in chimeric mice deserves detailed attention both to the number of genetic factors for which an animal is chimeric and to the clonal structure of the tissue in question. Beyond Mom1, other loci can strongly modify the severity of the Min phenotype. An emergent challenge is to find ways to identify the full set of genes that interact with the intestinal cancer predisposition of the Min mouse strain. With such a set, one can then work, using contemporary mouse genetics, to identify the molecular, cellular and organismal strategies that integrate their functions. Finally, with appropriately phenotyped human families, one can investigate by a candidate approach which modifying factors influence the epidemiology of human colon cancer. Even if a candidate modifier does not explain any of the genetic epidemiology of colon cancer in human populations, modifier activities discovered by mouse genetics provide candidates for chemopreventive and/or therapeutic modalities in the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号