首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Telomeres play the key protective role at chromosomes. Many studies indicate that loss of telomere function causes activation of DNA damage response. Here, we review evidence supporting interdependence between telomere maintenance and DNA damage response and present a model in which these two pathways are combined into a single mechanism for protecting chromosomal integrity. Proteins directly involved in telomere maintenance and DNA damage response include Ku, DNA-PKcs, RAD51D, PARP-2, WRN and RAD50/MRE11/NBS1 complex. Since most of these proteins participate in the repair of DNA double-strand breaks (DSBs), this was perceived by many authors as a paradox, given that telomeres function to conceal natural DNA ends from mechanisms that detect and repair DSBs. However, we argue here that the key function of one particular DSB protein, Ku, is to prevent or control access of telomerase, the enzyme that synthesises telomeric sequences, to both internal DSBs and natural chromosomal ends. This view is supported by observations that Ku has a high affinity for DNA ends; it acts as a negative regulator of telomerase and that telomerase itself can target internal DSBs. Ku then directs other DSB repair/telomere maintenance proteins to either repair DSBs at internal chromosomal sites or prevent uncontrolled elongation of telomeres by telomerase. This model eliminates the above paradox and provides a testable scenario in which the role of DSB repair proteins is to protect chromosomal integrity by balancing repair activities and telomere maintenance. In our model, a close association between telomeres and different DNA damage response factors is not an unexpected event, but rather a logical result of chromosomal integrity maintenance activities. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

2.
Fifteen percent of tumors utilize recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. The mechanisms underlying ALT are unclear but involve several proteins involved in homologous recombination including the BLM helicase, mutated in Bloom''s syndrome, and the BRCA1 tumor suppressor. Cells deficient in either BLM or BRCA1 have phenotypes consistent with telomere dysfunction. Although BLM associates with numerous DNA damage repair proteins including BRCA1 during DNA repair, the functional consequences of BLM-BRCA1 association in telomere maintenance are not completely understood. Our earlier work showed the involvement of BRCA1 in different mechanisms of ALT, and telomere shortening upon loss of BLM in ALT cells. In order to delineate their roles in telomere maintenance, we studied their association in telomere metabolism in cells using ALT. This work shows that BLM and BRCA1 co-localize with RAD50 at telomeres during S- and G2-phases of the cell cycle in immortalized human cells using ALT but not in cells using telomerase to maintain telomeres. Co-immunoprecipitation of BRCA1 and BLM is enhanced in ALT cells at G2. Furthermore, BRCA1 and BLM interact with RAD50 predominantly in S- and G2-phases, respectively. Biochemical assays demonstrate that full-length BRCA1 increases the unwinding rate of BLM three-fold in assays using a DNA substrate that models a forked structure composed of telomeric repeats. Our results suggest that BRCA1 participates in ALT through its interactions with RAD50 and BLM.  相似文献   

3.
In mammalian cells, homologous recombination (HR) provides anaccurate mechanism for the repair of DNA double-strand breaks causedby replication fork breakdown or DNA damaging agents. HR also plays arole in the maintenance of eukaryotic telomeres; cells defective in therecombinational repair proteins RAD51D or RAD54 exhibit telomereshortening and end-to-end chromosome fusions. Here we discuss theway in which HR contributes to telomere protection and elongation inmammalian cells. Understanding the mechanisms by which HRpromotes telomere maintenance has important implications for genomicstability and tumorigenesis.  相似文献   

4.
Telomere maintenance requires the RAD51D recombination/repair protein   总被引:12,自引:0,他引:12  
The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are required in mammalian cells for normal levels of genetic recombination and resistance to DNA-damaging agents. We report here that RAD51D is also involved in telomere maintenance. Using immunofluorescence labeling, electron microscopy, and chromatin immunoprecipitation assays, RAD51D was shown to localize to the telomeres of both meiotic and somatic cells. Telomerase-positive Rad51d(-/-) Trp53(-/-) primary mouse embryonic fibroblasts (MEFs) exhibited telomeric DNA repeat shortening compared to Trp53(-/-) or wild-type MEFs. Moreover, elevated levels of chromosomal aberrations were detected, including telomeric end-to-end fusions, a signature of telomere dysfunction. Inhibition of RAD51D synthesis in telomerase-negative immortalized human cells by siRNA also resulted in telomere erosion and chromosome fusion. We conclude that RAD51D plays a dual cellular role in both the repair of DNA double-strand breaks and telomere protection against attrition and fusion.  相似文献   

5.
6.
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.  相似文献   

7.
Telomere maintenance is critical for genome stability. The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance, though its precise role is unclear. We report here that depletion of hStn1 induces catastrophic telomere shortening, DNA damage response, and early senescence in human somatic cells. These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA. Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres, increases telomere fragility, hinders telomere DNA synthesis, as well as delays and compromises telomeric C-strand synthesis. We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α (polα) to telomeres, suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres. Additionally, our data suggest that hStn1 is unlikely to be part of the telomere capping complex. We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA, therefore preventing rapid telomere loss.  相似文献   

8.
Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA(+)) and alternative lengthening of telomere (ALT) cells and decreased the percentage of damaged telomeres associated with ALT-associated PML bodies (APB) and the number of APB in ALT cells. Mechanistically, NS could promote the recruitment of PML-IV to SUMOylated TRF1 in TA(+) and ALT cells. This event was stimulated by DNA damage. Supporting the importance of NS and PML-IV in telomere protection, we demonstrate that loss of NS or PML-IV increased the frequency of telomere damage and aberration, reduced telomeric length, and perturbed the TRF2(ΔBΔM)-induced telomeric recruitment of RAD51. Conversely, overexpression of either NS or PML-IV protected ALT and TA(+) cells from telomere damage. This work reveals a novel mechanism in telomere protection.  相似文献   

9.
The ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells.  相似文献   

10.
Telomestatin is a potent G-quadruplex ligand that interacts with the 3' telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the gamma-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.  相似文献   

11.
Telomeres and the DNA damage response: why the fox is guarding the henhouse   总被引:4,自引:0,他引:4  
Maser RS  DePinho RA 《DNA Repair》2004,3(8-9):979-988
DNA double strand breaks (DSBs) are repaired by an extensive network of proteins that recognize damaged DNA and catalyze its repair. By virtue of their similarity, the normal ends of linear chromosomes and internal DNA DSBs are both potential substrates for DSB repair enzymes. Thus, telomeres, specialized nucleo-protein complexes that cap chromosomal ends, serve a critical function to differentiate themselves from internal DNA strand breaks, and as a result prevent genomic instability that can result from their inappropriate involvement in repair reactions. Telomeres that become critically short due to failure of telomere maintenance mechanisms, or which become dysfunctional by loss of telomere binding proteins, elicit extensive checkpoint responses that in normal cells blocks proliferation. In this situation, the DNA DSB repair machinery plays a major role in responding to these "damaged" telomeres - creating chromosome fusions or capturing telomeres from other chromosomes in an effort to rid the cell of the perceived damage. However, a surprising aspect of telomere maintenance is that many of the same proteins that facilitate this repair of damaged telomeres are also necessary for their proper integrity. Here, we review recent work defining the roles for DSB repair machinery in telomere maintenance and in response to telomere dysfunction.  相似文献   

12.
13.
端粒位于真核细胞线性染色体末端,正常的端粒长度与结构对于细胞基因组稳定的维持有重要作用. 端粒DNA序列的高度重复性使其容易形成一些特殊的二级结构,相比染色体其他位置更难复制. 结合在端粒上的Shelterin蛋白复合体由六个端粒结合蛋白组成,该复合体可以通过抑制端粒处异常DNA损伤修复途径的激活维持端粒的稳定. 此外,近几年的研究显示,Shelterin蛋白复合体还具有调控功能异常端粒的DNA修复途径选择,参与端粒的复制功能. 因此,本文就最近发现的Shelterin蛋白复合体成员调控的端粒处DNA修复及参与的端粒复制过程进行综述.  相似文献   

14.
DNA methylation modulates telomere function. In Arabidopsis thaliana, telomeric regions have a bimodal chromatin organization with unmethylated telomeres and methylated subtelomeres. To gain insight into this organization we have generated TAIR10-Tel, a modified version of the Arabidopsis reference genome with additional sequences at most chromosome ends. TAIR10-Tel has allowed us to analyse DNA methylation at nucleotide resolution level in telomeric regions. We have analysed the wild-type strain and mutants that encode inactive versions of all currently known relevant methyltransferases involved in cytosine methylation. These analyses have revealed that subtelomeric DNA methylation extends 1 to 2 kbp from Interstitial Telomeric Sequences (ITSs) that abut or are very near to telomeres. However, DNA methylation drops at the telomeric side of the telomere-subtelomere boundaries and disappears at the inner part of telomeres. We present a comprehensive and integrative model for subtelomeric DNA methylation that should help to decipher the mechanisms that govern the epigenetic regulation of telomeres. This model involves a complex network of interactions between methyltransferases and subtelomeric DNA sequences.  相似文献   

15.
Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.  相似文献   

16.
Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction ( approximately 73%) has binding dynamics similar to TRF1 (residence time of approximately 44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of approximately 11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.  相似文献   

17.
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.  相似文献   

18.
19.
The ATM (ataxia telangiectasia mutated) gene product has been implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, and cell cycle control. The human ATM protein shows similarity to several yeast and mammalian proteins involved in meiotic recombination and cell cycle progression. Because of the homology of the human ATM gene to the TEL1 and rad3 genes of yeast, it has been suggested that mutations in ATM could lead to defective telomere maintenance. Recently, we have shown that the ATM gene product, which is defective in the cancer-prone disorder ataxia telangiectasia (AT), influences chromosome end associations and telomere length. A possible hypothesis explaining these results is that the defective telomere metabolism in AT cells is due to altered interactions between the telomeres and the nuclear matrix. These interactions were examined in nuclear matrix halos prior to and after irradiation. A difference was observed in the ratio of soluble and matrix-associated telomeric DNA between cells derived from AT and normal individuals. Treatment with ionizing radiation affected the ratio of soluble and matrix-associated telomeric DNA only in the AT cells. To test the hypothesis that the ATM gene product is involved in interactions between telomeres and the nuclear matrix, such interactions were examined in human cells expressing either a dominant-negative effect or complementation of the ATM gene. The phenotype of RKO colorectal tumor cells expressing ATM fragments containing a leucine zipper motif mimics the altered interactions of telomere and nuclear matrix seen in AT cells. Fibroblasts from AT individuals transfected with a wild-type ATM gene had corrected telomere-nuclear matrix interactions. In experiments designed to determine whether there is a link between the altered telomere-nuclear matrix interactions and defective telomere movement and clustering, a significant difference was observed in the ratio of soluble compared to matrix-associated telomeric DNA sequences in meiocytes of Atm(-/-) and control mice. These results suggest that the ATM gene influences the interactions between telomeres and the nuclear matrix and that alterations in telomere chromatin could be at least partly responsible for the pleiotropic phenotypes of the ATM gene. This paper summarizes our recent publications on the influence of inactivation of ATM on the interaction of telomeres with nuclear matrix in somatic and germ cells.  相似文献   

20.
Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号