首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Extraction and detergent/lipid activation of dolichol kinase   总被引:1,自引:0,他引:1  
The CTP-dependent dolichol kinase from bovine liver microsomes was optimally extracted using either 0.5% sodium deoxycholate or 0.5% Triton X-100 containing 0.5 M NH4Cl. All activity was found in the supernatant fraction following high-speed centrifugation. This fraction was depleted of phospholipid (phospholipid remaining, less than 5% of total) by gel chromatography of the 0.5% deoxycholate extract. This partially purified enzyme was maximally activated 9- or 53-fold over controls in the presence of 0.1% deoxycholate or 0.1% Triton X-100, respectively. Stimulation of the kinase was also observed with mixtures of dimyristoylphosphatidylcholine and deoxycholate. The level of stimulation by these mixtures was up to 20-fold higher than that observed in controls having deoxycholate alone. Dimyristoylphosphatidylcholine alone was not stimulatory. A 1:1 molar ratio of Triton X-100 or deoxycholate to dimyristoylphosphatidylcholine was optimal for enzyme activation. The half-maximum velocity of the dephospholipidated enzyme at 1:1 molar ratio of detergent to dimyristoylphosphatidylcholine was obtained at 150 or 550 microM CTP in the presence of deoxycholate or Triton X-100, respectively. It has been observed, therefore, that dolichol kinase may be extracted from liver microsomes, depleted of endogenous phospholipids and activated by specific molar ratios of detergent to phospholipid.  相似文献   

2.
D B McIntosh  D C Ross 《Biochemistry》1985,24(5):1244-1251
The effect of increasing concentrations of the nonionic detergent Triton X-100 on catalytic activity, stability, phospholipid content, and aggregational state of solubilized Ca2+ ion activated adenosinetriphosphatase (Ca2+-ATPase) of sarcoplasmic reticulum has been investigated. Increasing concentrations of Triton X-100 in the range 0.2-0.6% (w/v) inhibited ATP hydrolysis and p-nitrophenyl phosphate hydrolysis in parallel to the extent of 50% and 95%, respectively. Inactivation of p-nitrophenyl phosphate hydrolysis by preincubation in excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) at 25 degrees C was monophasic and first order at all concentrations of Triton X-100. The rate constant for inactivation increased sharply in the range 0.1-0.6% Triton X-100. At higher concentrations, the increase was less marked. Protein-protein associations of the solubilized ATPase were assessed by glutaraldehyde cross-linking and by ultracentrifugation in sucrose gradients. Both methods indicated a decrease in these associations in the 0.1-0.5% range. Cross-linking studies established that above 0.5% Triton X-100 the enzyme is greater than 90% monomeric. The amount of phospholipid associated with the ATPase, recovered from sucrose gradients, decreased from about 50 mol of phospholipid/mol of ATPase at 0.1% Triton X-100 to about 3 mol of phospholipid/mol of ATPase at 0.5% and higher concentrations. Monomeric ATPase and aggregated ATPase isolated from equilibrium mixtures of these components had similar phospholipid/protein ratios. The results indicated that with increasing Triton X-100 concentrations, inhibition of catalysis, destabilization, loss of protein-protein associations, and loss of phospholipid occur concurrently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
It was shown that, among ionic and nonionic detergents tested, only Triton X-100 was able to stimulate the activity of rat liver phosphatidylserine decarboxylase, whereas other detergents were without effect or were inhibitory. The solubilization procedure of phosphatidylserine decarboxylase from mitochondrial membranes with Triton X-100 was elaborated. The dependence of the solubilized decarboxylase on the Triton X-100 to phosphatidylserine ratio and the inhibitory effect of Triton X-100 at its molar ratio to phospholipid higher than 5.6 was observed. No divalent cation requirement and no dependence of the ionic strength for the solubilized enzyme were observed. Kinetic parameters were determined.  相似文献   

4.
Ethanolaminephosphotransferase (CDPethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase, EC 2.7.8.1) has been purified in active form from rat brain microsomes by a two-step chromatographic procedure. Enzyme preparations characterized by high specific activity and stability were obtained supplementing the solubilization and elution buffers, containing 1% Triton X-100, with 0.01% 2,6-di-tert-butyl-4-methylphenol. The specific activity of the purified enzyme was about 1200-times higher than that of the crude solubilized enzyme. The lipid dependence of ethanolaminephosphotransferase was studied both in the presence of Triton X-100 and in detergent-free enzyme preparations. The activity of the detergent-solubilized ethanolaminephosphotransferase was strongly modified by phospholipids. The kinetic behaviour of the enzyme was also dependent on the lipids contained in the aggregates obtained by removal of the detergent from detergent/lipid/protein suspensions. A regulatory role of phospholipids on the activity of the membrane-bound ethanolaminephosphotransferase is discussed.  相似文献   

5.
NAD+ glycohydrolase activity located in the nuclear envelope was maximally solubilized by treatment with 0.1--0.2% Triton X-100. The residual activity largely represents the chromatin-associated NAD+ glycohydrolase. Under these conditions the phospholipids were extensively solubilized (over 90%) while leaving the nuclei physically stable, although the nuclear membranes were removed, as shown by electron microscopy. After Triton X-100 treatment, deoxyribonuclease I did not significantly affect the residual NAD+ glycohydrolase activity, although the DNA was completely broken down. This enzyme activity can be released from the nuclear pellet by incubation with phospholipase C. For comparative studies, the glucose 6-phosphatase activity, known to be present in the nuclear envelope, was investigated. Treatment with 0.01% Triton X-100 released 10--20% of the phospholipids, but without solubilizing either glucose 6-phosphatase or NAD+ glycohydrolase. Higher Triton X-100 concentrations (0.1--1.0%) inhibited glucose 6-phosphatase, but not NAD+ glycohydrolase activity. NAD+ glycohydrolase is apparently present in a latent form in the nuclear envelope. Glucose 6-phosphatase, However, shows no such latency.  相似文献   

6.
The phospholipid dependence of the UDP-glucose sterol glucosyl transferase (UDPG-SGTase) from maize coleoptiles was previously demonstrated using the partially purified and highly delipidated enzyme, in the presence of the detergent Triton X-100 (P Ullmann, P Bouvier-Navé, P Benveniste [1987] Plant Physiol 85: 51-55). We now report the reconstitution of the enzyme activity into unilamellar lipid vesicles. This was achieved by adding phospholipids, sterols and β-octylglucoside to the solubilized enzyme and passing the mixture through Sephadex G-50. The treatment led to almost complete removal of the detergents. The incorporation of UDPG-SGTase in the lipid vesicles was demonstrated by (a) coelution of the enzyme activity with the labeled lipid vesicles (average diameter: 260Å) on a Sephacryl S-1000 column and (b) flotation experiments on metrizamide density gradients. Release of dithiobis-(2-nitro-benzoic acid) (DTNB) from DTNB-preloaded vesicles was very slow, indicating good membrane integrity of the vesicles. Treatment of the intact vesicles with the nonpermeant reagent p-chloro-mercuribenzene sulfonate led to more than 95% inactivation of the total enzyme activity, i.e. the activity measured in the presence of Triton X-100 at permeabilizing concentration. This suggests an outward orientation for the active site of the enzyme. Finally, the enzyme was incorporated into vesicles of various phospholipid compositions and the kinetic parameters of the reactions were determined. Our results clearly show that the reconstituted UDPG-SGTase activity is stimulated to a large extent by negatively charged phospholipids.  相似文献   

7.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

8.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

9.
We purified phosphatidic acid phosphatase (EC 3.1.3.4) 2300-fold from porcine thymus membranes. The enzyme was solubilized with beta-octyl glucoside and Triton X-100 and fractionated with ammonium sulfate. The purification was then achieved by chromatography in the presence of Triton X-100 with Sephacryl S-300, hydroxylapatite, heparin-Sepharose, and Affi-Gel Blue. The final enzyme preparation gave a single band of M(r) = 83,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. The native enzyme, on the other hand, was eluted at M(r) = 218,000 in gel filtration chromatography with Superose 12 in the presence of Triton X-100. The enzyme was judged to be specific to phosphatidic acid, since excess amounts of dicetylphosphate or lysophosphatidic acid did not inhibit the enzyme activity. In this respect, the enzyme was inhibited by 1,2-diacylglycerol but not by 1- or 2-monoacylglycerol and triacylglycerol. The enzyme required Triton X-100 or deoxycholate for its activity. Although the enzyme appeared to be an integral membrane protein, we could not detect its phospholipid dependencies. The activity was independent of Mg2+, and other cations were strongly inhibitory. The specific enzyme activity was 15 mumol/min/mg of protein when assayed using phosphatidic acid as Triton X-100 mixed micelles. The Km for the surface concentration of phosphatidic acid was 0.30 mol%. The enzyme was inhibited by sphingosine and chloropromazine, and less potently, by propranolol and NaF. The enzyme was insensitive to thio-reactive reagents like N-ethylmaleimide.  相似文献   

10.
Myclin from rat brain contained adenosine 3′, 5′-monophosphate (cyclic AMP)-dependent protein kinase activity, which was solubilized by 0.2% Triton X-100 and required exogenous protein substrate for its activity. Also present was a protein kinase which catalysed the phosphorylation of the endogenous substrate and which was neither solubilized by Triton X-100 nor stimulated by cyclic AMP. Sodium fluoride was required to maintain the activity of the endogenous phosphorylation, probably by inhibiting ATPase activity, but had no effect on the phosphorylation of histone by the solubilized enzyme. Protamine and myelin basic protein served as well as histone as a substrate for the solubilized enzyme. A protein kinase modulator had no effect on the endogenous phosphorylation, but inhibited histone phosphorylation by the solubilized enzyme. Cyclic AMP-binding activity was observed in both the solubilized and non-solubilized preparations. The concentration of cyclic AMP required to give half-maximal binding activity of the preparations was about 2.5 nM. The results indicate that the cyclic AMP-binding site of the protein kinase in myelin may partially be accessible, whereas the catalytic site may be integrated into the membrane structure of myelin.  相似文献   

11.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes.  相似文献   

12.
The effects of phospholipids on the reaction catalyzed by UDP-GlcNAc:dolichol phosphate GlcNAc-1-phosphate transferase have been studied with delipidated rat lung microsomes. Deoxycholate-solubilized enzyme was depleted of measurable phospholipid by either gel filtration on Sephadex G-100 or affinity chromatography on pentyl-agarose. The latter procedure also removed nucleotide and sugar nucleotide hydrolases. Delipidated protein fractions were devoid of GlcNAc-1-phosphate transferase activity unless supplemented with phospholipids. Maximal recovery of enzyme activity was obtained with an approximate 1:1 weight ratio of phosphatidylglycerol:phosphatidylcholine, with the observed rate being synergistic as compared to rates observed for each individual phospholipid. Variable recoveries of enzyme activity were obtained with mixtures containing other acidic phospholipids and phosphatidylcholine. Enzyme activity in the fraction eluted from pentyl-agarose could be recovered, after removal of Triton X-100, with sedimented phospholipid vesicles. Significant stabilization of enzyme activity associated with the phospholipid vesicles was obtained by the inclusion of dolichol phosphate.  相似文献   

13.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

14.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

15.
The highly purified respiratory chain NADH dehydrogenase (EC 1.6.99.3) of Escherichia coli is inactive in the absence of detergent or phospholipid. Triton X-100 is the detergent that gives optimal activity, but the Triton X-100-activated enzyme is stimulated an additional 2-fold by E. coli phospholipids. Phosphatidylglycerol and diphosphatidylglycerol are the most effective lipid activators. The activated complex prepared with diphosphatidylglycerol is stable, whereas that with phosphatidylglycerol loses activity rapidly. Maximum activation by phospholipids occurs after preincubation at 0 degrees C and at pH 7. Triton X-100 is required at low concentrations for lipid activation, but high concentrations interfere with the activation. When the enzyme is optimally activated by phospholipids, it may be additionally activated 2-fold by spermidine, but not by magnesium. In contrast, the Triton X-100-activated form of the enzyme is stimulated by several divalent cations, without specificity. Thus, the most stable, active form of the purified NADH dehydrogenase is generated in the presence of diphosphatidylglycerol and spermidine.  相似文献   

16.
Electrophoretic patterns of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from rat erythrocyte were studied. The enzyme was solubilized by the following treatments: a) Triton X-100, b) sodium deoxycholate, or c) ultrasonic irradiation. When the erythrocyte membrane was solubilized by Triton X-100 at concentrations higher than 0.3%, by 10 mM sodium deoxycholate, or by ultrasonic irradiation for more than 5 min, a single band of acetylcholinesterase activity appeared in the gel. Two bands of activity were stained in the gel when the membrane was solubilized by Triton X-100 at concentrations between 0.1--0.2%, or by ultrasound for 5 min. Electrophoretic patterns of acetylcholinesterase from rats fed a fat-sufficient diet were similar to those for the enzyme from animals fed a fat-free diet. The recombination of lipids with the enzyme eluted from the gels confirmed the "phenotypic allosteric desensitization phenomenon".  相似文献   

17.
Microsomal and supernatant chitinase activities have been prepared from mycelial cultures ofMucor mucedo. Studies of their responses to changing temperature and phospholipid composition indicate that the lipid environment is important in regulating membrane-bound chitinase activity, but that supernatant chitinase activity does not have a phospholipid requirement. Membrane-bound chitinase was solubilized by different types of non-denaturing detergents. Maximum solubilization was achieved with 1 mM Zwittergent-14 or 1.2% Triton X-100 (93% and 90% solubilization, respectively). This solubilized chitinase activity could not be activated by protease treatment, i.e., was nonzymogenic, as was the supernatant chitinase. The insoluble residual chitinase activity was, however, zymogenic after treatment with 1.2% Triton X-100, but fully active after treatment with 3% Triton X-100.  相似文献   

18.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

19.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

20.
Several detergents were investigated for their ability to increase activity of 2':3'-cyclic nucleotide 3'-phosphodiesterase in isolated myelin. The ability of Triton X-100 and Sulfobetaine DLH to solubilize the enzyme was also examined. Solubilization with Triton X-100 was only effective in the presence of salt, for example with NaCl 51% of the activity was solubilized. A single extraction with Sulfobetaine DLH yielded slightly more solubilized enzyme and did not require added salt. Both activation and solubilization of 2':3'-cyclic nucleotide 3'-phosphodiesterase appeared to be similarly dependent on detergent concentration, suggesting a common action of the detergent in the two processes. Myelin basic protein was solubilized more readily than the enzyme. In contrast with the enzyme in myelin, 2':3'-cyclic nucleotide 3'-phosphodiesterase activity in C6 cells was not increased in the presence of Triton X-100, and was partially solubilized by either Triton X-100 or NaCl alone. No myelin basic protein could be detected in C6 cells by radioimmunoassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号