首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
In recent years, light traps with light-emitting diodes (LEDs) have been widely used in integrated pest management. The spiralling whitefly, Aleurodicus dispersus Russell, a highly invasive pest which causes heavy damage to fruit trees and ornamental plants, exhibits positive phototaxis, and light trap is the most appropriate tool for monitoring. We evaluated the use of LEDs as an inexpensive light source and examined the relationship between the captured number and the population density of adult A. dispersus in the field. We found that the violet (405 nm) LED traps captured the most adults of A. dispersus, and the captured numbers were significantly higher than those of blue (460 nm), green (520 nm), yellow (570 nm), and red (650 nm) LED traps. The adults of A. dispersus captured by light traps equipped with violet LEDs and smeared with liquid paraffin had a significant positive correlation with the population density of adult A. dispersus in a guava orchard, with a correlation coefficient of 0.828. In general, the light traps with 15 violet LED bulbs hung into 550-mL plastic bottles and smeared with liquid paraffin were the portable devices for attraction of adult A. dispersus. The results have potential use for improving the efficiency of light traps at attracting and trapping the adult spiralling whitefly.  相似文献   

2.
The cigarette beetle, Lasioderma serricorne (Fabricius), is an important pest insect that consumes a variety of dry foods. It is known that UV light traps attract this species. However, less attention has been paid to its preferred wavelength. First, we investigated the spectral sensitivity of the compound eye. Next, we compared the attraction efficiency of LEDs of different colors (wavelengths). Our results showed that ultraviolet (UV, 375 nm) and blue (470 nm) LEDs attracted the most cigarette beetles of both sexes, irrespective of mating or oviposition status, although the UV LED consistently tended to attract the most beetles. Although the primary sensitivity peak of the compound eye was 520 nm, the green LED (520 nm) scarcely attracted beetles. Although the reason for the difference between the peaks in spectral sensitivity and attraction of beetles awaits further studies, whether UV and/or blue LEDs is more effective as a practical light trap for controlling L. serricorne beetle is discussed in this study.  相似文献   

3.
Visual orientation in the greenhouse whitefly (Trialeurodes vaporariorum Westwood, Hemiptera: Aleyrodidae) is the result of “wavelength‐specific behaviours.” Green–yellow elicits “settling behaviour” while ultraviolet (UV) radiation initiates “migratory behaviour.” The only available physiological study of the photoreceptors' spectral efficiency showed peaks in the green and the UV range and whitefly vision was said to be dichromatic so far. In order to study the visual behaviour of T. vaporariorum, 19 narrow‐bandwidth light emitting diodes (LEDs) covering the UV‐A and visible range were used in combination with light scattering acrylic glass screens in a small‐scale choice arena under greenhouse conditions. Multiple‐choice and dual‐choice assays were performed, resulting in LED‐based behavioural action spectra of settling (green) and migratory behaviour (UV). A potential inhibitory blue–green chromatic mechanism was studied by combining yellow with different bluish LEDs. Intensity dependencies were illustrated by changing LED intensities. Regarding the “settling response,” highest attraction was achieved by a green LED with a centroid wavelength of 550 nm, while a blue LED with 469 nm proved to be most inhibitory. Besides this inhibitory interaction, an intensity dependence was observed within the action spectrum in the green–yellow range. “Migratory behaviour” was elicited the most by the UV LED with the shortest available wavelength of 373 nm. The results provide compelling behavioural evidence for the presence of a green and a yet undescribed blue sensitive photoreceptor and a blue–green opponent mechanism. Furthermore, empirical colour choice models were built and receptor peaks were estimated around 510–520 nm (green), 480–490 nm (blue) and 340–370 nm (UV). Consequently, a trichromatic receptor setup is suggested for T. vaporariorum.  相似文献   

4.
Visual traps like yellow sticky card traps are used for monitoring and control of the greenhouse whitefly (Trialeurodes vaporariorum). However, reflected intensity (brightness) and hence, attractiveness depend on the ambient light conditions, and the colour (wavelength) might not fit with the sensitivity of whitefly photoreceptors. The use of light emitting diodes (LEDs) is a promising approach to increase the attractiveness, specificity and adaptability of visual traps. We constructed LED‐based visual traps equipped with blue and green high‐power LEDs and ultraviolet (UV) standard LEDs according to the putative spectral sensitivities of the insects' photoreceptors. In a series of small‐scale choice and no‐choice recapture experiments, the factors time of day as well as light intensity and light quality (colour) of LED traps were studied in terms of attractiveness compared to yellow traps without LEDs. Green LED traps (517 nm peak wavelength) were comparably attractive in no‐choice experiments but clearly preferred over yellow traps in all choice experiments. The time of day had a clear effect on the flight activity of the whiteflies and thereby on the trapping success. Blue LEDs (474 nm) suppressed the attractiveness of the light traps when combined with green LEDs suggesting that a yet undetected photoreceptor, sensitive for blue light, and an inhibiting interaction with the green receptor, might exist in T. vaporariorum. In choice experiments between LED traps emitting green light only or in combination with UV (368 nm), the green‐UV combination was preferred. In no‐choice night‐time experiments, UV LEDs considerably increased whitefly flight activity and efficacy of trapping. Most likely, the reason for the modifying effect of UV is the stimulating influence on flight activity. In conclusion, it seems that the use of green LEDs alone or in combination with UV LEDs could be an innovative option for improving attractiveness of visual traps.  相似文献   

5.
《Journal of Asia》2023,26(3):102080
Light traps equipped with light emitting diodes (LEDs) have been applied to manage some phototactic insect pests. The diamondback moth, Plutella xylostella, is a cosmopolitan insect pest to be seriously harmful to many cruciferous plants. The present research focused on evaluating the phototactic behavior responses of the moths to several wavelengths and photon flux densities of LED lights under laboratory and field conditions. The results from the laboratory showed that the highest phototactic behavior responses of P. xylostella moths were recorded for UV (380 nm) LED light under 1.5 µmol m−2 s−1 and 2.5 µmol m−2 s−1. The moths were more attracted to light traps equipped with 4 LEDs and 6 LEDs of 380 nm, respectively, between 20:00 and 22:00 than the other groups and night times in the field. The finding from the field was consistent with the results from the laboratory. We found that the 380 nm LED light results in the strongest attraction rate of the moths by 92.4 % and the moths caught in light trap with the UV LEDs was 1.62 times more than that with a black light. These data clearly demonstrate that P. xylostella moths have a high sensitivity to 380 nm, therefore, a 380 nm LED light trap could be useful for monitoring and controlling the moths.  相似文献   

6.
《Journal of Asia》2021,24(4):1024-1032
Pest control is a major challenging component in agricultural and horticultural crops. Recently, the light-emitting diode (LED) trap driven by solar energy is a growing eco-friendly technology in pest control. The study was aimed to design, fabricate and investigate the effectiveness of a portable solar-powered LED trap for monitoring insect pests. The trap is compressed into a photovoltaic panel, battery, LED array, solar rectifier, insect collection tray, and PVC legs. Four different coloured LEDs viz., ultraviolet (UV)-405 nm, blue-470 nm, green-525 nm and red-630 nm were studied. The study was conducted in a groundnut field during the autumn season for 15 days. The results showed that the UV LED trap captured significantly more insects than the blue, green, and red LED traps except for Helicoverpa armigera. The average attraction of Spodoptera litura, Aproaerema modicella, Amsacta albistriga, Scirtothrips dorsalis, Aphis craccivora, and Empoasca kerri population to UV LED trap was 77.17 ± 18.89, 64.67 ± 12.91, 39 ± 16.80, 43.33 ± 18.30, 38.33 ± 17.08 and 33.17 ± 10.94, respectively. The red LED trap captured the least number of insects; however, the attraction of A. albistriga to the red LED was higher than the blue and green LED traps. Arcsine transformation (AT) was applied to transform experimental trap efficiency. UV LED trap had a significantly higher AT value than other LED traps. Overall mean AT values for UV, green, blue, and red LED traps were 34.98, 31.06, 29.87 and 22.87, respectively. The proposed portable solar-assisted LED trap could be a promising and effective pest control tool in areas where inconsistent electricity supply.  相似文献   

7.
The spectral sensitivity of the fish and the suitable light wavelength range for survival and growth performance of juvenile Pacific bluefin tuna (PBT) were investigated. The spectral sensitivity peak of PBT under photopic condition was observed between 449 and 503 nm, which corresponded to their natural habitat. The fish were reared in tanks irradiated continuously with 4 kinds of light emitting diodes (LEDs). The maximum wavelength of LEDs used for the rearing experiment were 460 nm (blue), 520 nm (green), 630 nm (red), and 450–680 nm (white). There was no notable difference in survival rate among fish in the four LED groups. However, the growth of juvenile PBT was lesser under red light compared to the green and white light wavelengths. These results suggest that PBT juveniles have low sensitivity to red light because the fish are rarely exposed to the red light wavelengths under natural ocean conditions. Thus, low sensitivity to red light negatively influenced the feeding behavior and growth of PBT juveniles.  相似文献   

8.
《Journal of Asia》2014,17(1):79-82
The light sensitivity of insects varies in response to different wavelengths of light. The change of light responses of vector insects plays an important role in the method of transmission and propagation of plant viruses. Here, we investigated whether the light attraction behaviors of whiteflies are altered by virus acquisition. Firstly, the light attraction rates of whiteflies were determined using LED light bulbs exhibiting different wavelengths in the visible and UV spectra. Whiteflies, Bemisia tabaci and Trialeurodes vaporariorum, were mostly attracted to green LEDs (526 nm). The attraction rate to green LED light was higher in B. tabaci than in T. vaporariorum, whereas it did not significantly differ between the B- and Q-biotypes of B. tabaci. Secondly, we investigated whether or not the green light attraction behavior of B. tabaci is influenced by the acquisition of Tomato yellow leaf curl virus (TYLCV). The attraction rate to green LED light was 2.5–3 times higher in TYLCV-infected whiteflies than in TYLCV-free whiteflies. However, this difference disappeared when the distance from the light source was greater than 0.5 m. Our results show that B. tabaci favors green light and its attraction is highly enhanced by the acquisition of the plant virus, TYLCV.  相似文献   

9.
As the vector of the global disease of citrus greening or huanglongbing, Asian citrus pysllids, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are the greatest threat to the worldwide citrus industry. Critical to management of D. citri and huanglongbing is optimization of surveillance methodologies. Although phytophagous insects may find host plants by multimodal cues, some appear to primarily use visual cues. In this study, we examined the behavior of Asian citrus psyllids toward light from light‐emitting diodes (LEDs) in the insect visible spectrum. The periodicity of attraction of psyllids to visual cues was evaluated in the field (yellow sticky traps) and laboratory (multi‐colored LEDs) with a strong peak of activity during the afternoon in both the field and the laboratory (both 14:00 to 18:00 hours). In laboratory evaluations of psyllids to differently colored LEDs, strongest attraction was to LEDs emitting ultraviolet (390 nm), green (525 nm), and yellow (590 nm) light. Male and female psyllids did not differ significantly in their responses to visual cues. These findings provide the basis for formulating better traps that reflect UV and yellow light and potentially incorporate UV LEDs for monitoring psyllids and a better understanding of Asian citrus psyllid visual behavior.  相似文献   

10.
Phototactic responses of Liriomyza trifolii adults to six different light-emitting diodes (LEDs) were investigated, and their responses were compared to that using a luring lamp (BLB) under laboratory conditions. Based on the attraction rate under optimal light conditions, the green LED (520?±?5 nm) showed the highest attraction rate (99.7 %), followed by the yellow LED (590?±?5 nm, 96.1 %), the red LED (625?±?10 nm, 91.4 %), the blue LED (470?±?10 nm, 91.2 %), the UV LED (365 nm, 71.0 %), and the IR LED (730 nm, 5.6 %). Moreover, the green LED was approximately 1.4 times more attractive than BLB (71.1 %) to L. trifolii adults. These results suggest that the green LED was the most useful for monitoring of L. trifolii adults under optimal conditions.  相似文献   

11.
The influence of light quality on growth and development of in vitro grown Doritaenopsis hort. (Orchidaceae) plants was investigated. Growth parameters like leaf and root fresh/dry mass and leaf area were highest with plants grown under red plus blue light emitting diodes (LEDs). Leaf length was greater with the plants grown under red LED. Carbohydrate (starch, sucrose, glucose and fructose) and leaf pigment (chlorophylls and carotenoids) biosynthesis of the plants was significantly increased in plants grown under red plus blue LEDs compared to red or blue LED and fluorescent light treatments. This study suggests that the production of quality Doritaenopsis plants is possible by culturing the plants in vitro under a mixture of blue plus red light sources.  相似文献   

12.
Studies of visual ecology have typically focused on differences among species while paying less attention to variation among populations and/or individuals. Here, we show that the relative abundance of UV, violet, yellow, and red cones varies between two populations of bluefin killifish, Lucania goodei. Animals from a spring population (high-transmission UV/blue light) have a higher frequency of UV and violet cones and a lower frequency of yellow and red cones than animals from a swamp population (low-transmission UV/blue light). Visual sensitivity does not vary significantly between the populations, but spring animals tend to be more sensitive in the UV/blue wavelengths (360–440 nm) and less sensitive in longer wavelengths (560–600 nm) than swamp animals. The results have two important implications. First, the tight conservation of functional regions of opsin genes across taxa does not imply that visual systems are constrained in their evolution; differential sensitivity can arise through differential expression of cone classes within the retina. Second, intraspecific visual signals in this species may evolve to maximize contrast between the signaler and the background (as opposed to brightness); males with blue anal fins are most abundant in swamp habitats where animals express fewer UV and violet cones.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

13.
瓢虫的趋光性反应研究   总被引:3,自引:0,他引:3  
以六斑月瓢虫Menochilus sexmaculata Fabricius和狭臀瓢虫Coccinella transversalis Fabricius为例,研究了瓢虫对不同光质(波长)的趋光性反应。在室内分别测定了六斑月瓢虫和狭臀瓢虫对5种发光二极管(LED)光波的趋性,以及在田间挂板(佳多)测定了瓢虫对色板的选择趋性。室内测定结果表明,瓢虫对黄色和白色LED光波的选择趋性显著高于与其它颜色;田间挂板试验表明,黄色对瓢虫的诱杀作用最强。综合分析,黄色对瓢虫有强烈的吸引作用,建议在使用黄板进行田间监测和防治时应考虑对天敌瓢虫的诱杀作用。  相似文献   

14.
《Journal of Asia》2021,24(3):889-892
Inter-strain variation in attraction to specific LED wavelengths has been studied previously. Here, we report on differences in attraction of two commercialized strains (Biobest and Koppert) of Orius laevigatus to 10 or 11 different LED wavelengths. We found a significant difference in attraction patterns among the tested wavelengths between the two insect strains; for the Biobest strain, attraction was the highest in 365 and 385 nm wavelengths, while for the Koppert strain, it was the highest in 365, 385, 395, and 405 nm wavelength. As both strains showed highest attraction rate at a wavelength of 385 nm, lights with this output could be used in field pest management strategies.  相似文献   

15.
《Journal of Asia》2020,23(4):1181-1187
The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pests of greenhouse crops. The intensive use of chemical insecticides has resulted in insecticide resistance in T. vaporariorum and the critical level of pesticides residue in crops. It is therefore necessary to develop new control methods based on ecological pest management. The present study was designed to control greenhouse whitefly by finding and using insect repellent wavelengths. The repellent wavelength experiment was conducted by a two-way phototactic apparatus given a choice between darkness and visible wavelength spectrum from violet (380–450 nm) to red (620–750 nm). The phototactic responses of the greenhouse whitefly were then investigated in a four-way phototactic apparatus given a choice between two light regimes, light-emitting diode (LED) and sunlight. The results indicated that the lowest (69.2%) and highest (97.8%) number of whiteflies were attracted to violet and orange (590–625 nm) spectra, respectively. In addition, the present study indicated a significant attraction of T. vaporariorum adults to sunlight compared with LED. Furthermore, the eggplants grown under growth LEDs showed a significantly higher growth rate than the plants grown under sunlight. These findings suggest that this type of LED not only has positive effects on plant growth but it also has a repellent activity on T. vaporariorum adults, leading us to develop an effective behavioral control of the greenhouse whitefly.  相似文献   

16.
This study assessed the effects of high-intensity violet light on selected yeast and mould fungi. Cell suspensions of Saccharomyces cerevisiae, Candida albicans, and dormant and germinating spores (conidia) of the mould Aspergillus niger were exposed to high-intensity narrow band violet light with peak output at 405 nm generated from a light-emitting diode (LED) array. All three fungal species were inactivated by the 405-nm light without a requirement for addition of exogenous photosensitiser chemicals. Of the fungal species tested, S. cerevisiae was most sensitive and dormant conidia of A. niger were most resistant to 405-nm light exposure. Five-log10 colony forming units per millilitre (CFU ml?1) reductions of the tested species required exposure doses of 288 J cm?2 for S. cerevisiae, 576 J cm?2 for C. albicans, and a much higher value of 2.3 kJ cm?2 for dormant conidia of A. niger. During germination, A. niger conidia became more sensitive to 405-nm light exposure and sensitivity increased as germination progressed over an 8 h test period. Light exposure under aerobic and anaerobic conditions, together with results obtained using ascorbic acid as a scavenger of reactive oxygen species, revealed that 405-nm light inactivation in fungi involved an oxygen-dependent mechanism, as previously described in bacteria. The inactivation results achieved with yeast cells and fungal spores together with operational advantages associated with the use of a visible (nonultraviolet (UV)) light source highlight the potential of 405-nm light for fungal decontamination applications.  相似文献   

17.
CaS:Ce3+ is an efficient green‐emitting (535 nm) phosphor, excitable with blue light (450–470 nm) and was synthesized via a solid‐state reaction method by heating under a reducing atmosphere. The luminescent properties, photoluminescent (PL) excitation and emission of the phosphor were analyzed by spectrofluorophotometry. The excitation and emission peaks of the CaS:Ce3+ phosphor lay in the visible region, which made them relevant for light‐emitting diode (LED) application for the generation of white light. Judd‐Oflet parameters were calculated and revealed that green light emitted upon blue illumination. The prepared phosphor had strong blue absorption at 470 nm and a broad green emission band range from 490–590 nm with the peak at 537 nm. The characteristics of the CaS:Ce3+ phosphor make it suitable for use as a wavelength tunable green emitting phosphor for three band white LEDs pumped by a blue LED (470 nm). The Commission International de l'Eclairage co‐ordinates were calculated by a spectrophotometric method using the spectral energy distribution (0.304, 0.526) and confirm the green emission. The potential application of this phosphor is as a phosphor‐converted white light‐emitting diode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae) are destructive weevils on Ailanthus altissima in China. This study examined phototactic behaviour of E. scrobiculatus and E. brandti in response to eight light-emitting diodes (LEDs) in the laboratory and field. Effects of gender, starvation, and light and dark experience on the phototactic behaviour of the insects were evaluated. The results demonstrated that, the two species of weevil were phototactic insects and most sensitive to violet light (400–405?nm), followed by blue–violet light (420–430?nm). They were less sensitive to red (655–660?nm), white (6000–6500?k), blue–green (470–480?nm), yellow (590–595?nm), blue (450–455?nm), and green (515–530?nm) light. In the light intensity range of 200–1000?lux, the light intensity had no significant effect on the phototatic behaviour of E. scrobiculatus and E. brandti. Phototactic behaviour of the insects was affected by gender. The phototaxis indices of the two species of weevil increased with starvation, reaching a plateau after 2 or 3?d of starvation. The phototaxis indices of E. scrobiculatus and E. brandti were significantly affected by various wavelengths of light following exposure to the light for 3?h or in different dark experience time. In the mark-release-recapture test, the number of E. scrobiculatus and E. brandti adults trapped by violet (400–405?nm) light traps is the largest. The information provided here provides a basis for survey and control of E. scrobiculatus and E. brandti.  相似文献   

19.
Abstract  A study of responses by Culicoides spp. to light traps with light-emitting diodes (LEDs) confirmed that the livestock virus vector, Culicoides brevitarsis Kieffer, was preferentially attracted to green light. Four species shown previously to respond to blue light exhibited significantly higher responses to ultraviolet (UV) light. Field trials comparing green LEDs with incandescent lights in New South Wales, Northern Territory and East Timor confirmed the superiority of green LEDs for catching C. brevitarsis . The green LED traps also had a significant advantage over incandescent traps for a wide range of Culicoides species. These included: species whose ultimate preference was for UV, most species that are proven or potential vectors of viruses affecting Australian livestock and native animals and the main species affecting humans in northern Australia. Use of green LEDs has been adopted for trapping C. brevitarsis , especially in its marginal and low-density areas, and for detecting incursions of new Culicoides spp. into Australia. Use could be possible for species in other insect Orders.  相似文献   

20.
Fungus gnats occur worldwide with more than 1 700 described species. They can cause serious damages on ornamentals, crop plants, and edible mushrooms, and are considered to be a serious pest in the last years. Bradysia difformisFrey (Diptera: Sciaridae) represents a common species in Europe. Usually, yellow sticky traps are used for monitoring and control in greenhouses and fluorescent tube‐based light traps are additionally applied for control in mushroom cultivation. The importance of such visual trapping measures for efficient monitoring or alternative control increases in biological and integrated plant protection. However, detailed color preferences of fungus gnats are mostly unknown. We studied the visual orientation of B. difformis with light‐emitting diodes (LEDs) in a broad range of peak wavelengths from 371 nm (ultraviolet, UV) to 619 nm (amber). We determined attractive wavelengths in consecutive choice experiments in daylight and darkness. Highest numbers of adult B. difformis were attracted to UV radiation (382 nm) followed by green‐yellow light (532–592 nm). The responses to UV and the green‐yellow range were relatively unspecific and mostly independent from intensity. Combination of UV and yellow LEDs improved trapping efficacy compared to a single UV or yellow LED trap, as well as compared to a common yellow sticky trap. When both wavelengths were compared to a black surface to increase contrasts, the black surface was preferred over yellow, but was less attractive than UV. Thus, B. difformis displays two, probably wavelength‐specific, behaviors to UV radiation and green‐yellow light, with UV being the most attractive stimulus. These behaviors might be directly related to underlying photoreceptors, suggesting dichromatic vision in B. difformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号