首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The main objective of this study was to characterize the individual effects of water chemistry (Ca(2+), Na(+), dissolved organic matter (DOM), pH, alkalinity) on the rapid binding of copper to the gill surface of rainbow trout using an in vitro gill binding assay. In this assay, individual gill arches were exposed for 5 min to (64)Cu labelled copper solutions ranging from 0.02 to 0.16 microM in water chemistries reflecting the full range of fresh water values for the Great Lakes. The gills displayed saturable Cu binding within this Cu range but gill-Cu binding was completely unaffected over the full range of calcium, sodium and alkalinity concentrations used. Only low pH (pH 4.0) and commercial DOM (Aldrich humic acid at > or =3 mgC/l) altered copper binding to rainbow trout gills in vitro. These findings were consistent with the results of geochemical modelling of our water chemistry (using MINEQL+, Version 4.5) which showed that H(+) and DOM affected the free cupric ion concentration. However, DOM (up to 80 mgC/l) was only able to reduce Cu on the gills by 50%. We hypothesize that in the range of 0.02-0.16 microM Cu there are two high affinity Cu binding sites on the gills, one having a substantially higher affinity for copper than DOM. The absence of a calcium effect on gill copper binding was in accord with in vivo evidence that calcium primarily acts to alter the physiology of the gill binding sites through acclimatory processes, rather than through competitive interactions. It was a surprise that water chemistry parameters influence rapid gill-metal binding in a manner different to their influence on acute toxicity and different from the effects on long-term binding reported in other studies. Currently, the biotic ligand model uses the rapid increase of gill copper (believed to reflect binding to the physiologically active receptor sites) to model gill binding characteristics. The distinction between rapid surface binding and metal uptake obviously plays an important role in determining the toxic effects of copper, especially when regulators need to predict the modifying effects of water chemistry.  相似文献   

2.
The effects of chronic exposure to waterborne Cd and elevated dietary Ca, alone and in combination, were examined in juvenile rainbow trout, Oncorhynchusmykiss. Fish were chronically exposed to 0.05 (control) or 2.56 μg/l Cd [as Cd(NO3)2·4H2O] and were fed 2% body mass/day of control (29.6 mg Ca/g) or Ca-supplemented trout food (52.8 mg Ca/g as CaCl2·2H2O). Cd accumulated mainly in gill, liver, and kidney. Waterborne Cd inhibited unidirectional Ca uptake from water into the gill and induced hypocalcemia in the plasma on day 40. Waterborne Cd also induced an elevated Ca concentration on day 20 in the gill tissue of trout fed the Ca-supplemented diet and a decreased Ca concentration on day 35 in the gills of trout fed the control diet. Dietary Ca protected against Cd accumulation in gill, liver, and kidney, but did not protect against the inhibition of Ca uptake into the gill or plasma hypocalcemia. When fed Ca-supplemented diet and exposed to waterborne Cd, fish showed 35% mortality, compared to 0–2% in control fish and in the Cd-exposed fish with normal Ca in the diet. Growth, on the other hand, was not affected by any treatment.  相似文献   

3.
To assess the influence of water temperature on silver uptake, rainbow trout Oncorhynchus mykiss ( c . 50 g; held at 13° C) were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 4 and 16° C without previous temperature acclimation. To assess the influence of temperature on elimination of previously accumulated Ag, rainbow trout were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 12° C, then were randomly divided amongst two Ag‐free water containers, differing only in temperature (3 and 16° C), for 2 months. In the uptake study greater accumulation of Ag was seen in the gills, plasma and especially the livers and bile of 'warm' rainbow trout (16° C) compared to 'cold' rainbow trout (4° C), which can be explained by the higher metabolic rates of the warmer fish. In the depuration study there was no net elimination of Ag from the livers and bile but there was biphasic elimination of Ag from the gills and plasma of 'warm' and 'cold' fish, but with few differences between them. This indicated that temperature‐dependent processes were less important in Ag elimination than in Ag uptake. Toxicokinetic modelling of Ag uptake by livers indicated four‐fold greater uptake of Ag by 'warm' rainbow trout compared to 'cold' rainbow trout (one compartment uptake model). Elimination of previously accumulated Ag from the plasma was best fitted by a two compartment rate‐constant based model, with approximately half the plasma Ag load eliminated within 24 h, followed by slower elimination of Ag over 2 months.  相似文献   

4.
This study investigated the short-term (3 h) cadmium binding characteristics of the gills, as well as the influence of various water chemistry variables [calcium, magnesium, sodium, pH, alkalinity and dissolved organic carbon (DOC)] on short-term gill accumulation and acute toxicity of cadmium in juvenile freshwater rainbow trout. The cadmium binding pattern revealed two types of cadmium binding sites in the gill: (i) saturable high affinity sites operating at a low range of waterborne cadmium concentration, and (ii) non-saturable low affinity sites operating at a higher range of cadmium concentration. Among the water chemistry variables tested, only calcium and DOC significantly reduced both gill accumulation and toxicity of cadmium. Interestingly, alkalinity (15-90 mg L(-1) as CaCO(3)) did not influence the gill cadmium accumulation but a significant increase in toxicity was recorded at a higher alkalinity level (90 mg L(-1)). Affinity constants (log K) for binding of competing cations (Cd(2+) and Ca(2+)) to the biotic ligand and for binding of Cd(2+) to DOC were derived separately from the 3 h gill binding tests and the 96 h toxicity tests. In general, the values agreed well, indicating that both tests targeted the same population of high affinity binding sites, which are likely Ca(2+) uptake sites on the gills. These parameters were then incorporated into a geochemical speciation model (MINEQL+) to develop a biotic ligand model for predicting acute toxicity of cadmium in trout. The model predictions exhibited a good fit with the measured toxicity data except for high alkalinity and pH.  相似文献   

5.
Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne Cu (22 microg/l) in moderately hard water for up to 28 days. Relative to control fish kept at background Cu levels (2 microg/l), Cu-preexposed fish displayed decreased uptake rates of waterborne Cu via the gills but not of dietary Cu via the gut during 48-h exposures to (64)Cu-radiolabeled water and diet, respectively. At normal dietary and waterborne Cu levels, the uptake rates of dietary Cu into the whole body without the gut were 0.40-0.90 ng. g(-1). h(-1), >10-fold higher than uptake rates of waterborne Cu into the whole body without the gills, which were 0.02-0.07 ng. g(-1). h(-1). Previously Cu-exposed fish showed decreased new Cu accumulation in the gills, liver, and carcass during waterborne (64)Cu exposures and in the liver during dietary (64)Cu exposures. A 3-h gill Cu-binding assay showed downregulation of the putative high-affinity, low-capacity Cu transporters and upregulation of the low-affinity, high-capacity Cu transporters at the gills in Cu-preexposed fish. Exchangeable Cu pools in all the tissues were higher during dietary than during waterborne (64)Cu exposures, and previous Cu exposure reduced waterborne exchangeable Cu pools in gill, liver, and carcass. Overall, these results suggest a quantitatively greater role for the dietary than for the waterborne route of Cu uptake, a key role for the gill in Cu homeostasis, and important roles for the liver and gut in the normal metabolism of Cu in fish.  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss, approximately 2 g) were exposed to 0.6-1.0 microM Pb (125-200 microgl(-1)) for 3 h in ion-poor water. Complexing ligands (citrate, ethylenediamine, organic matter (OM)) or competing cations (Ca, Mg, Na) were added to the water. After exposure, trout gills were removed and analyzed for accumulated Pb. From these exposures, a conditional equilibrium binding constant (K) for Pb-gill binding was calculated (log K(Pb-gillPb)=6.0), plus conditional binding constants for cationic competition at the Pb binding sites and for Pb binding to OM in the water. These log K values were entered into the MINEQL+ aquatic chemistry equilibrium program, to calculate binding of Pb by trout gills. Two versions of the Pb-gill binding model were generated, one of which took into account OM quality as indicated by a simple measure of OM aromaticity, the specific absorption coefficient. The two model versions were tested against acute Pb toxicity (as the time to reach 50% fish mortality; LT50) during 1-week exposures of trout to 3.9 microM Pb in water collected from across southern Ontario. Both versions of the model generated highly significant correlations between the LT50 values and gill Pb concentrations calculated from measured exposure water chemistry, with the OM quality version correlating slightly better. Water pH also correlated well with the LT50 values, because the Pb exposures were in the pH range (7-8) where there is a nearly linear relationship between water pH and inorganic complexation of Pb. Advantages of the Pb-gill binding model include its completeness and the flexibility inherent in its conceptual framework, for example the inclusion of competition by Ca and H(+) for Pb binding sites on gills, and inclusion of complexation of Pb in the water column by natural OM and by carbonate.  相似文献   

7.
Understanding the effects of chemical toxicants on energetic processes is an important aspect of ecotoxicology. However, the influence of toxicant concentration and time of exposure on metabolism in aquatic organisms is still poorly understood. The purpose of this investigation was to determine the influence of increasing levels of three stressors (Cu, Cd, percent salinity) and exposure time (24 h and 96 h) on the metabolic rate of fathead minnows (Pimephales promelas). In all 24-h exposures, there existed a threshold concentration, above which metabolic rate decreased significantly compared to the control and lower concentrations. In contrast, the metabolic rate of fish exposed for 96 h increased significantly in all concentrations compared to fish from the control. We suggest fathead minnows exhibit a consistent pattern of metabolic response to stressors, regardless of the physiological mechanisms involved, and that this response differs as a function of time of exposure.  相似文献   

8.
Concentrations of heavy metals blends avoided by schools of fathead minnows and alkaline pH levels avoided by schools of bluegill sunfish, fathead minnows, golden shiners, and rainbow trout were determined in a boundary layer avoidance chamber. Parameters measured were residence time, activity, and sequential fish location counts. Data were evaluated using linear, quadratic, and polynomial regression, log10 transformations, analysis of variance, covariance analysis, Duncan's multiple range test, and Hochberg's GT2 test. The best methods of analysis are quadratic regression and covariance analysis.  相似文献   

9.
Some physiological parameters were measured in adult rainbow trout during a 10-day exposure to 180 μg Altotal l−1 in acid water (pH 4.7) with or without humic substances (10 mg l). The fish were acclimatized to pH 5.0 for 7 days prior to the experimental treatments.
Chemical analyses revealed that, in the presence of human substances, 74–80% of the A1 was organic bound, while in the absence of humic substances most of the Al(987percnt;) occurred in the inorganic form.
Al bound to humic substances (13–150 μg l−1) did not alter the plasma NaCl-concentration, nor the haematocrit value, of rainbow trout during an exposure period of 10 days. This contrasts with the high death rate obtained within 2–3 days when most of the A1 (175 μg l−1) was in the inorganic form. The lethality was accompanied by a 25% decrease in the plasmaconcentration of NaCl and a doubling of the haematocrit value. Bulk analysis revealed that when the metal was present in inorganic forms the total Al content of the gills (75 μg A1 g−1 wet weight) was 15 times higher than when it was present as bound to the humic substances. These experiments showed that the accumulation of A1 at the gills was accompanied by physiological disturbances, both being a function of the chemical speciation of Al.  相似文献   

10.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

11.
Rainbow trout (Oncorhynchus mykiss) are often used to estimate important biotic ligand model (BLM) parameters, such as metal-binding affinity (log K) and capacity (Bmax). However, rainbow trout do not typically occupy metal-contaminated environments, whereas yellow perch (Perca flavescens) are ubiquitous throughout most of North America. This study demonstrates that dynamic processes that regulate Cu uptake at the gill differ between rainbow trout and yellow perch. Rainbow trout were more sensitive to acute aqueous Cu than yellow perch, and toxicity was exacerbated in soft water relative to similar exposures in hard water. Whole body Na loss rate could account for acute Cu toxicity in both species, as opposed to new Cu uptake rate that was not as predictive. Time course experiments using radiolabelled Cu (64Cu) revealed that branchial Cu uptake was rather variable within the first 12 h of exposure, and appeared to be a function of Cu concentration, water hardness, and fish species. After 12 h, new branchial Cu concentrations stabilized in both species, suggesting that metal exposures used to estimate BLM parameters should be increased in duration from 3 h to 12+ h. In rainbow trout, 71% of the new Cu bound to the gill was exchangeable (i.e., able to either enter the fish or be released back to the water), as opposed to only 48% in yellow perch. This suggests that at equal exposure concentrations, proportionally more branchial Cu can be taken up by rainbow trout than yellow perch, which can then go on to confer toxicity. These qualitative differences in branchial Cu handling between the two species emphasize the need to develop BLM parameters for each species of interest, rather than the current practice of extrapolating BLM results derived from rainbow trout (or other laboratory-reared species) to other species. Data reported here indicate that a one-size-fits-all approach to predictive modeling, mostly based on rainbow trout studies, may not suffice for making predictions about metal toxicity to yellow perch—that is, a species that inhabits metal-contaminated lakes around northern Canadian industrial operations.  相似文献   

12.
Viral haemorrhagic septicaemia virus (VHSV) genotype IVb was recently detected as the cause of numerous mortality events in Great Lakes fish. In situ hybridization was used to examine the gonads from 13 fish, including freshwater drum Aplodinotus grunniens and muskellunge Esox masquinongy that were infected naturally, as well as rainbow trout Oncorhynchus mykiss and fathead minnows Pimphales promelas, which were experimentally infected. Although the ovaries and testes of fish infected by VHSV IVb had few lesions, viral RNA was present in the ovaries of the rainbow trout and fathead minnow and was abundant in the gonads of muskellunge and in the ovaries of freshwater drum. Viral RNA was present mainly surrounding yolk vacuoles/granules or adjacent to the germinal vesicle, with lesser amounts found within the germinal vesicle, in the mesovarium and/or tunica albuginea and blood vessels of the ovary. Viral RNA was also found in and surrounding primary and secondary spermatocytes of the muskellunge.  相似文献   

13.
Rainbow trout Oncorhynchus mykiss ( c . 60 g) were exposed for 1 week to 0·1 μM silver as AgNO3 in ion poor water (Ca c . 150 μM, pH c . 8, water temperature 13° C) with or without waterborne organic matter (27 mg C l−1 as Aldrich humic acid), thiosulphate (5 μM Na2S2O3) or chloride (4 mM KCl). Organic matter decreased Ag accumulation by the gills initially, but did not decrease Ag accumulation by plasma or liver. Thiosulphate decreased the amount of Ag accumulated by the gills for the entire 1 week exposure but had no effect on Ag concentrations in the plasma, liver or bile. Chloride had no effect on Ag uptake in any of the tissues examined. All three complexing agents reduced the decreases in plasma Na and Cl concentrations caused by Ag. To study the effects of waterborne complexing agents on Ag depuration, rainbow trout were exposed to 0·1 μM AgNO3 for 1 week then placed for 8 days in Ag‐free, ion poor water with or without waterborne organic matter (55 mg C l−1) or thiosulphate (5 μM). These complexing agents did not alter depuration of Ag from the gills, plasma, liver or bile. Thus, once Ag has entered a fish, subsequent elimination of internal Ag is not affected by external complexing agents.  相似文献   

14.
A stocking program with rainbow trout (Salmo gairdneri) at High Rock Lake, Manitoba failed due to infections with large numbers of Contracaecum spp. larvae. Nematode larvae in the intestinal tract, body cavity and musculature made the fish unmarketable. A combination of experimental infections of rainbow trout and pelicans (Pelecanus erythrorhynchos), observations on the behavior of fish-eating birds, and numbers of larval Contracaecum spp. in minnow species led to the following conclusions. The introduction of rainbow trout attracted large numbers of fish-eating birds, particularly pelicans. Concurrent predation by rainbow trout on fathead minnows (Pimephales promelas), five-spined sticklebacks (Culaea inconstans), and nine-spined sticklebacks (Pungitius pungitius), concentrated the parasites. The combined increase in densities of the introduced fish host and fish-eating birds, and the short life cycle of the parasite, increased the numbers of parasites in rainbow trout over a season and in the indigenous minnow species between years. Numbers of larvae in the indigenous minnow species declined when stocking of rainbow trout was stopped and use of the lake by fish-eating birds, particularly pelicans, returned to normal levels.  相似文献   

15.
We evaluated the differential nature of interactions between waterborne Ca and Cd transport in the gills of yellow perch (Perca flavescens) and rainbow trout (Oncorhynchus mykiss), two species with a more than 400-fold difference in acute waterborne Cd tolerance. The Jmax (maximum rate of uptake) and Km (inverse of affinity) for Ca uptake, in the absence of Cd, were significantly lower in yellow perch (120.48 nM g–1 wet wt h–1 and 92.17 M, respectively) relative to rainbow trout (188.68 nM g–1 wet wt h–1 and 243.90 M, respectively). Similarly, the Jmax for Cd uptake, at the lowest waterborne Ca level (100 M) tested, was significantly lower in yellow perch (0.27 nM g–1 wet wt h–1) relative to rainbow trout (0.40 nM g–1 wet wt h–1), but no significant difference was observed in the Km values between the two species (yellow perch: 32.47 nM; rainbow trout: 31.27 nM). Waterborne Cd (0–890 nM) as well as waterborne Ca (100–1,000 M) competitively inhibited branchial uptake of each other in both species. However, analyses of inhibitor constants for branchial Ca uptake by waterborne Cd ( ) revealed that the inhibition was about 1.8 times more potent in rainbow trout compared to yellow perch. In contrast, analyses of inhibitor constants for branchial Cd uptake by waterborne Ca ( ) indicated that the inhibition was more than three fold more potent in yellow perch than in rainbow trout. Higher branchial Ca uptake and more potent inhibition by Cd as well as higher branchial Cd uptake and less potent inhibition by Ca were also reflected in whole-body measurements of Ca and Cd influx in trout relative to perch. Overall, whole-body effects were in accord with the branchial kinetic analyses. These results further strengthen the conclusion that branchial influxes of Ca and Cd occur through common pathways. Moreover, interspecific differences in acute waterborne Cd sensitivity can be explained, at least in part, by the differential nature of interactions between waterborne Ca and Cd transport in fish gills.Abbreviations FAAS flame atomic absorption spectrophotometer - GFAAS graphite furnace atomic absorption spectrophotometer - J max maximum rate of uptake - K i inhibitor constant - K m substrate concentration at which the rate of uptake is half of the Jmax - 96 h LC50 concentration at which 50% mortality occurs after 96 h Communicated by L.C.-H. WangThis revised version was published online in February 2004 with corrections to the abbreviation .  相似文献   

16.
A protective limestone treatment was applied to an acid-sensitive lake in northeastern Minnesota as part of the Acid Precipitation Mitigation Program. This 6–year study evaluated the impact of that treatment on lakes in the upper Midwest that experience episodes of acid stress but have not lost basic species integrity and community structure. Several changes in the fish community can be directly or indirectly attributed to the addition of 4.6 tonnes of calcium carbonate early in the third year of the study. An almost 30–fold increase in the population of Pimephales promelas(fathead minnow) a year after liming, based on mark-recapture estimates from trap netting and snorkeling, was attributed to a pH increase and a three-fold increase in the calcium concentration of the epilimnion. After the initial increase, the abundance of fathead minnows declined in subsequent years, as did the elevated pH and calcium concentrations. The Salvelimis fontinalis(brook trout) population also increased in the lake following application of limestone, but this was due in part to closing the lake to fishing. An increase in survival of stocked brook trout to age 1+ and an increase in growth of older brook trout after liming were attributed to the increased forage that the fathead minnows provided. Fathead minnows may have also reduced predation pressure on young brook trout by older brook trout. This study demonstrated that liming of a slightly acidic lake did not adversely affect the integrity of the fish community, and in fact may have increased the abundance and biomass of the forage fish community and indirectly increased the survival, abundance, and growth of brook trout.  相似文献   

17.
Despite the importance of predator recognition in mediating predator-prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments indicate that some prey who do not innately recognize specific predators as threats have the ability to display antipredator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. The purpose of our present experiment is to test whether this generalization of predator recognition is dependent on the level of risk associated with the known predator. We conditioned fathead minnows to chemically recognize brown trout either as a high or low threat and then tested the minnows for their responses to brown trout, rainbow trout (closely related predator) or yellow perch (distantly related predator). When the brown trout represents a high-risk predator, minnows show an antipredator response to the odour of brown trout and rainbow trout but not to yellow perch. However, when the brown trout represents a low-risk predator, minnows display antipredator responses to brown trout, but not to the rainbow trout or yellow perch. We discuss these results in the context of the Predator Recognition Continuum Hypothesis.  相似文献   

18.
Understanding the effects of metal contamination in the Amazon basin is important because of the potential impact on this region of high biodiversity. In addition, the significance of fish as the primary source of protein for the local human population (living either alongside the Amazon River or in the city of Manaus) highlights the need for information on the metal transfer through the food chain. Bioaccumulation of metals in fish can occur at significant rates through the dietary route, without necessarily resulting in death of the organism. The goal of this work was to expose an economic relevant species from the Amazon basin (tambaqui, Colossoma macropomum) to dietary cadmium (Cd) at concentrations of 0, 50, 100, 200, and 400 microg.g-1 dry food. Fish were sampled on days 15, 30, and 45 of the feeding trials. Tissues were collected for analysis of Cd concentration using graphite furnace atomic absorption spectrophotometry. Cd accumulation in the tissues occurred in the following order: kidney > liver > gills > muscle. Relative to other freshwater fish (e.g., rainbow trout, tilapia), tambaqui accumulated remarkably high levels of Cd in their tissues. Although Cd is known to affect Ca2+ homeostasis, no mortality or growth impairment occurred during feeding trials.  相似文献   

19.
This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is an increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by up to 17% at a concentration of 30?µg l?1 based on the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300?µg l?1 and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment.  相似文献   

20.
The investigation established and validated methods to measure multiple biochemical indices of condition (whole body total lipids, whole body triglycerides, muscle RNA : DNA ratio and muscle protein) simultaneously in the same individual juvenile fish. It also provided examples of their application using a species comparison (salmonids and cyprinids) of the degree of change in these indices after food deprivation. The results showed that juvenile rainbow trout Oncorhynchus mykiss were much more susceptible to a decline in all biochemical indices of condition than juvenile fathead minnows Pimephales promelas upon food deprivation. The combination of these techniques can be used to accurately assess condition and growth potential of individuals from wild fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号