首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li XH  Li C  Xiao ZQ 《Journal of Proteomics》2011,74(12):2642-2649
A major problem in chemotherapy of cancer patients is drug resistance as well as unpredictable response to treatment. During chemotherapy, multiple alterations of genetics and epigenetics that contribute to chemoresistance take place, eventually impacting on disease outcome. A more complex picture of the mechanisms of drug resistance is now emerging through application of high-throughput proteomics technology. We have entered an exciting time where proteomics are being applied to characterize the mechanisms of drug resistance, and to identify biomarkers for predicting response to chemotherapy, thereby leading to personalized therapeutic strategies of cancer patients. Comparative proteomics have identified a large number of differentially expressed proteins associated with chemoresistance. Although roles and mechanisms of such proteins in chemoresistance need to be further proved, at least some of them may be potential biomarkers for predicting chemotherapeutic response. Herein, we review the recent advancements on proteomic investigation of chemoresistance in human cancer, and emphasize putative biomarkers for predicting chemotherapeutic response and possible mechanisms of chemoresistance identified through proteomic approaches. Suggested avenues for future work are discussed.  相似文献   

2.
Resistance to chemotherapy limits the effectiveness of current cancer therapies, including those used to treat colorectal cancer, which is the second most common cause of cancer death in Europe and the United States. 5-Fluorouracil-based chemotherapy regimens are the standard treatment for colorectal cancer in both the adjuvant and advanced disease settings. Drug resistance is thought to cause treatment failure in over 90% of patients with metastatic cancer, while drug resistant micrometastic tumour cells may also reduce the impact of adjuvant chemotherapy treatment. The identification of panels of biomarkers that not only identify those patients most likely to benefit from chemotherapy treatment, but also which chemotherapies to use, would be a major advance. In this review, we describe molecular mechanisms of drug resistance that may be relevant to colorectal cancer. We also describe the results of predictive biomarker studies in this disease. Finally, we discuss how pharmacogenomics and other high through-put technologies may impact on the clinical management of colorectal cancer in the future.  相似文献   

3.
Introduction: Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer.

Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance.

Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.  相似文献   


4.
Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC), and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of these pathways. Therefore, these nine differentially expressed genes and their associated functional pathways should provide the basis for novel personalized clinical treatments of basal-like breast cancer.  相似文献   

5.
Yao L  Zhang Y  Chen K  Hu X  Xu LX 《PloS one》2011,6(9):e24684

Background

Resistance to chemotherapy is the major cause of failure in breast cancer treatment. Recent studies suggest that secreted proteins may play important roles in chemoresistance. We sought to systematically characterize secreted proteins associated with drug resistance, which may represent potential serum biomarkers or novel drug targets.

Methodology/Principal Findings

In the present work, we adopted the proteomic strategy of one-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry to compare the secretome of MCF-7 and doxorubicin-resistant MCF-7/Dox. A total of 2,084 proteins were identified with at least two unique peptides in the conditioned media of two cell lines. By quantification with label-free spectral counting, 89 differentially expressed secreted proteins (DESPs) between the two cell lines were found. Among them, 57 DESPs were first found to be related to doxorubicin resistance in this work, including 24 extracellular matrix related proteins, 2 cytokines and 31 unclassified proteins. We focused on 13 novel DESPs with confirmed roles in tumor metastasis. Among them, the elevated expression of IL-18 in doxorubicin-resistant cell lines and breast tumor tissues was validated and its role in doxorubicin resistance was further confirmed by cell viability experiments in the presence or absence of this protein.

Conclusions/Significance

Comparative analysis of the secretome of MCF-7 and MCF-7/Dox identified novel secreted proteins related to chemotherapy resistance. IL-18 was further validated to contribute to doxorubicin resistance, in addition to its confirmed role in breast cancer metastasis. Due to its dual roles in both drug resistance and tumor metastasis, IL-18 may represent a useful drug target for breast cancer therapy.  相似文献   

6.
结直肠癌(colorectal cancer,CRC)是癌症相关死亡的第二大主要原因,且患者趋于年轻化,化疗、免疫治疗及靶向治疗等药物治疗虽然取得进展,但因药物的毒性、耐药及价格昂贵严重影响CRC的综合治疗效果,因此寻求新的、更敏感有效的药物和药物靶点是目前研究的热点。铁死亡作为一种近期发现的细胞死亡调节方式,它与癌症药物耐药性、敏感性密切相关,激活铁死亡成为克服传统癌症治疗耐药机制的潜在策略,诱导铁死亡的药物研发应用有望成为治疗CRC的有效手段。本文综述在CRC中铁死亡相关代谢途径药物研究的最新进展,以便整体认识基于铁死亡的药物在CRC中作用的具体机制,充分发掘其治疗潜力,为CRC的诊疗和耐药性的解决提供新的思路。  相似文献   

7.
8.
Borst P 《Open biology》2012,2(5):120066
Although chemotherapy of tumours has scored successes, drug resistance remains the major cause of death of cancer patients. Initial treatment often leaves residual disease, from which the tumour regrows. Eventually, most tumours become resistant to all available chemotherapy. I call this pan-resistance to distinguish it from multi-drug resistance, usually describing resistance caused by upregulation of drug transporters, such as P-glycoprotein. In this review, I discuss mechanisms proposed to explain both residual disease and pan-resistance. Although plausible explanations are at hand for residual disease, pan-resistance is still a mystery. My conclusion is that it is time for a major effort to solve this mystery using the new genetically modified mouse tumour models that produce real tumours resembling cancer in human patients.  相似文献   

9.
Since the discovery by Warburg of high aerobic glycolysis in most tumours in the 1920s, it has remained unclear how to exploit this in chemotherapy. The aim of this review is to assess the evidence for the involvement of the glyoxalase system in tumour growth and multidrug resistance and the importance of the glyoxalase system as a target for anticancer drug development and a source of biomarkers for tumour diagnosis. Increased expression of glyoxalase 1 appears to support the viability of tumour cells with high glycolytic rates. Multidrug resistance conferred by overexpression of glyoxalase 1 suggests mechanisms of toxicity of most current antitumour agents involve, in some part, accumulation of methylglyoxal to cytotoxic levels. The recent finding of glyoxalase 1 gene amplification in tumours and induction of increased glyoxalase 1 expression by malignant transformation and conventional antitumour drug treatment implies a critical role of glyoxalase 1 in innate and acquired multidrug resistance in cancer treatment. Improved understanding of glyoxalase 1 in cancer chemotherapy multidrug resistance is likely vital to achieve improvement of cancer patient survival rates. Advances made to counter glyoxalase 1-linked multidrug resistance with glyoxalase 1 inhibitors and related prodrugs has been translated from in vitro to pre-clinical in vivo studies. Further research is required urgently for next stage clinical translation. Finally, overexpression of glyoxalase 1 may be linked to multidrug resistance in chemotherapy of other disease - such as microbial infections.  相似文献   

10.
Although early detection of breast cancer improved in recent years, prognosis of patients with late stage breast cancer remains poor, mostly due to development of multidrug resistance (MDR) followed by tumor recurrence. Cancer stem cells (CSCs), with higher drug efflux capability and other stem cell-like properties, are concentrated in a side population (SP) of cells, which were proposed to be responsible for MDR and tumor repopulation that cause patients to succumb to breast cancer. Therefore, targeting of CSCs as an adjuvant to chemotherapy should be able to provide a more effective treatment of this disease. Here, we used IMD-0354, an inhibitor of NF-κB, identified for targeting CSCs, in a combination therapy with doxorubicin encapsulated in targeted nanoparticles. IMD-0354 did target CSCs, evidenced by a decrease in the SP, demonstrated by the inhibition of the following: dye/drug efflux, reduction in ABC transporters as well as in colony formation in soft agar and low attachment plates. Decrease of stem-like gene expression of Oct4, Nanog and Sox2, and apoptosis resistance related to the Survivin gene also was observed after treatment with this compound. In addition, IMD-0354 targeted non-CSCs as indicated by reducing viability and increasing apoptosis. Targeted drug delivery, achieved with a legumain inhibitor, proved to enhance drug delivery under hypoxia, a hallmark of the tumor microenvironment, but not under normoxia. Together, this allowed a safe, non-toxic delivery of both anticancer agents to the tumor microenvironment of mice bearing syngeneic metastatic breast cancer. Targeting both bulk tumor cells with a chemotherapeutic agent and CSCs with IMD-0354 should be able to reduce MDR. This could eventually result in decreasing tumor recurrences and/or improve the outcome of metastatic disease.  相似文献   

11.
Lung cancer remains the leading cause of cancer deaths worldwide, and advanced stage disease is largely refractory to conventional chemotherapy. Thus, there is an important need for alternative treatment strategies, and the ErbB proteins have emerged as potentially important therapeutic drug targets in this setting, apparently reflecting a state of “oncogene addiction” in some lung tumors. In this review, we discuss the recent identification of mutations that promote activation of ErbB family proteins in a subset of lung cancers, and the development of selective inhibitors of these proteins that have demonstrated clinical efficacy. We also discuss the problem of drug resistance, which severely limits the clinical utility of such agents, and has prompted intense efforts to better understand molecular mechanisms underlying drug resistance as well as strategies to overcome or prevent such resistance.  相似文献   

12.
BackgroundDrug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR’s role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.  相似文献   

13.
恶性肿瘤是严重威胁人类健康和社会发展的疾病。传统的肿瘤治疗方法如手术、放疗、化疗和靶向治疗等不能完全满足临床治疗的需求,新兴的免疫治疗成为了肿瘤治疗领域的研究热点。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)作为一种肿瘤免疫治疗方法,已获批用于治疗多种肿瘤,如肺癌、肝癌、胃癌和结直肠癌等。然而,ICIs在临床使用过程中,只有少数患者会出现持久反应,一些患者还会出现耐药和不良反应。因此,预测生物标志物的鉴定和开发对提高ICIs的治疗效果至关重要。肿瘤ICIs预测生物标志物主要包括肿瘤生物标志物、肿瘤微环境生物标志物、循环相关生物标志物、宿主环境生物标志物以及组合生物标志物等,对患者筛查、个体化治疗和预后评估具有重要意义。本文就肿瘤ICIs治疗预测生物标志物的前沿进展作一综述。  相似文献   

14.
Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.  相似文献   

15.

Introduction

Chemotherapy resistance is a major obstacle in effective neoadjuvant treatment for estrogen receptor-positive breast cancer. The ability to predict tumour response would allow chemotherapy administration to be directed towards only those patients who would benefit, thus maximising treatment efficiency. We aimed to identify putative protein biomarkers associated with chemotherapy resistance, using fresh tumour samples with antibody microarray analysis and then to perform pilot clinical validation experiments.

Materials and methods

Chemotherapy resistant and chemotherapy sensitive tumour samples were collected from breast cancer patients who had received anthracycline based neoadjuvant therapy consisting of epirubicin with cyclophosphamide followed by docetaxel. A total of 5 comparative proteomics experiments were performed using invasive ductal carcinomas which demonstrated estrogen receptor positivity (luminal subtype). Protein expression was compared between chemotherapy resistant and chemotherapy sensitive tumour samples using the Panorama XPRESS Profiler725 antibody microarray containing 725 antibodies from a wide variety of cell signalling and apoptosis pathways. A pilot series of archival samples was used for clinical validation of putative predictive biomarkers.

Results

AbMA analysis revealed 38 differentially expressed proteins which demonstrated at least 1.8 fold difference in expression in chemotherapy resistant tumours and 7 of these proteins (Zyxin, 14-3-3 theta/tau, tBID, Pinin, Bcl-xL, RIP and MyD88) were found in at least 2 experiments. Clinical validation in a pilot series of archival samples revealed 14-3-3 theta/tau and tBID to be significantly associated with chemotherapy resistance.

Conclusions

For the first time, antibody microarrays have been used to identify proteins associated with chemotherapy resistance using fresh breast cancer tissue. We propose a potential role for 14-3-3 theta/tau and tBID as predictive biomarkers of neoadjuvant chemotherapy resistance in breast cancer. Further validation in a larger sample series is now required.  相似文献   

16.
Breast cancer is a molecularly heterogeneous disease, and predicting response to chemotherapy remains a major clinical challenge. To minimize adverse side-effects or cumulative toxicity in patients unlikely to benefit from treatment, biomarkers indicating treatment efficacy are critically needed. iTRAQ labeling coupled with multidimensional LC-MS/MS of the enriched mitochondria and endoplasmic reticulum fraction, key organelles regulating apoptosis, has led to the discovery of several differentially abundant proteins in breast cancer cells treated with the chemotherapeutic agent doxorubicin followed by the death receptor ligand, TRAIL, among 571 and 801 unique proteins identified in ZR-75-1 and MDA-MB-231 breast cancer cell lines, respectively. The differentially abundant proteins represent diverse biological processes associated with cellular assembly and organization, molecular transport, oxidative stress, cell motility, cell death, and cancer. Despite many differences in molecular phenotype between the two breast cancer cell lines, a comparison of their subproteomes following drug treatment revealed three proteins displaying common regulation: PPIB, AHNAK, and SLC1A5. Changes in these proteins, detected by iTRAQ, were confirmed by immunofluorescence, visualized by confocal microscopy. These novel potential biomarkers may have clinical utility for assessing response to cancer treatment and may provide insight into new therapeutic targets for breast cancer.  相似文献   

17.
Small cell lung carcinoma (SCLC) is a highly aggressive cancer with low survival rate. Although initial response to chemotherapy in SCLC patients is well-rated, the treatments applied after the disease relapses are not successful. Drug resistance is accepted to be one of the main reasons for this failure. Therefore, there is an urgent need for new treatment strategies for SCLC. Meclofenamic acid, a nonsteroidal anti-inflammatory drug, has been shown to have anticancer effects on various types of cancers via different mechanisms. The aim of this study was to investigate the alterations that meclofenamic acid caused on a SCLC cell line, DMS114 using the tools of proteomics namely two-dimensional gel electrophoresis coupled to MALDI-TOF/TOF and nHPLC coupled to LC-MS/MS. Among the proteins identified by both methods, those showing significantly altered expression levels were evaluated using bioinformatics databases, PANTHER and STRING. The key altered metabolism upon meclofenamic acid treatment appeared to the cellular energy metabolism. Glycolysis was suppressed, whereas mitochondrial activity and oxidative phosphorylation were boosted. The cells underwent metabolic reprogramming to adapt into their new environment for survival. Metabolic reprogramming is known to cause drug resistance in several cancer types including SCLC. The identified differentially regulated proteins in here associated with energy metabolism hold value as the potential targets to overcome drug resistance in SCLC treatment.  相似文献   

18.
Triple-negative breast cancer (TNBC) is a group of breast cancers which neither express hormonal receptors nor human epidermal growth factor receptor. Hence, there is a lack of currently known targeted therapies and the only available line of systemic treatment option is chemotherapy or more recently immune therapy. However, in patients with relapsed disease after adjuvant or neoadjuvant therapy, resistance to chemotherapeutic agents has often developed, which results in poor treatment response. Multidrug resistance (MDR) has emerged as an important mechanism by which TNBCs mediate drug resistance and occurs primarily due to overexpression of ATP-binding cassette (ABC) transporter proteins such as P-glycoprotein (Pgp). Pgp overexpression had been linked to poor outcome, reduced survival rates and chemoresistance in patients. The aim of this mini-review is to provide a topical overview of the recent studies and to generate further interest in this critical research area, with the aim to develop an effective and safe approach for overcoming Pgp-mediated chemoresistance in TNBC.  相似文献   

19.
Platinum-based chemotherapy is the primary treatment for human ovarian cancer. Overcoming platinum resistance has become a critical issue in the current chemotherapeutic strategies of ovarian cancer as drug resistance is the main reason for treatment failure. Cytotoxic gold compounds hold great promise to reach this goal; however, their modes of action are still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2-DE and MS analysis to identify differential protein expression in a cisplatin-resistant human ovarian cancer cell line (A2780/R) following treatment with two representative gold compounds, namely Auranofin and Auoxo6. It is shown that Auranofin mainly acts by altering the expression of Proteasome proteins while Auoxo6 mostly modifies proteins related to mRNA splicing, trafficking and stability. We also found that Thioredoxin-like protein 1 expression is greatly reduced after treatment with both gold compounds. These results are highly indicative of the likely sites of action of the two tested gold drugs and of the affected cellular functions. The implications of the obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold agents.  相似文献   

20.
Although the application of multiple chemotherapy brought revolutionary changes to improve overall survival of osteosarcoma patients, the existence of multidrug resistance (MDR) has become a great challenge for successful osteosarcoma treatment in recent decades. Substantial studies have revealed various underlying mechanisms of MDR in cancers. As for osteosarcoma, evidence has highlighted that microRNAs (miRNAs) can mediate in the processes of DNA damage response, apoptosis avoidance, autophagy induction, activation of cancer stem cells, and signal transduction. Besides, these drug resistance‐related miRNAs showed much promise for serving as candidates for predictive biomarkers of poor outcomes and shorter survival time, and therapeutic targets to reverse drug resistance and overcome treatment refractoriness. This review aims to demonstrate the potential molecular mechanisms of miRNAs‐regulated drug resistance in osteosarcoma, and provide insight in translating basic evidence into therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号